{"title":"HERV-Derived Syncytin-1 and Syncytin-2 as Sources of Linear and Discontinuous Epitopes in Antiphospholipid Syndrome: A Pivotal Computational Study.","authors":"Lorenzo Di Palma, Rossella Talotta","doi":"10.24976/Discov.Med.202436189.195","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To date, no studies have investigated the potential reactivation of human endogenous retroviruses (HERVs) in the pathogenesis of antiphospholipid syndrome (APS). HERV-derived syncytin-1 and syncytin-2 are localized in the plasma membrane of cells and physiologically expressed during pregnancy. The current study aimed to determine whether the epitopes of syncytins can trigger an immune response leading to APS in genetically predisposed individuals.</p><p><strong>Methods: </strong>The TepiTool, ABCpred, and DiscoTope servers were utilized to predict T-cell and B-cell epitopes by inputting the FASTA sequences and 3D structures of syncytin-1, syncytin-2, and β2-glycoprotein I (β2GPI), which served as a reference antigen for APS. T-cell epitopes were selected based on their binding to a panel of human leukocyte antigen (HLA) class II alleles associated with APS according to the literature. Epitope predictions for the different proteins were statistically compared using GraphPad Prism.</p><p><strong>Results: </strong>For syncytin-1, we identified a total of 721 T-cell epitopes, 51 linear B-cell epitopes, and up to 40 conformational epitopes. For syncytin-2, we predicted 705 T-cell epitopes and 28 linear B-cell epitopes, but a lower number of conformational epitopes, which also exhibited lower B-cell receptor (BCR)-binding scores. The predicted T-cell and B-cell conformational epitopes of both syncytin-1 and syncytin-2 demonstrated significantly higher binding affinity to selected HLA alleles and BCR compared with β2GPI. Furthermore, syncytin-1 exhibited significantly higher immunogenicity than syncytin-2.</p><p><strong>Conclusions: </strong>Both syncytin-1 and syncytin-2 are computationally endowed with potential epitopes that may activate either T cells or B cells in individuals genetically predisposed to APS. While these findings may illuminate the possible role of HERVs in the development of APS, they warrant validation in further laboratory studies.</p>","PeriodicalId":93980,"journal":{"name":"Discovery medicine","volume":"36 189","pages":"2111-2131"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24976/Discov.Med.202436189.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To date, no studies have investigated the potential reactivation of human endogenous retroviruses (HERVs) in the pathogenesis of antiphospholipid syndrome (APS). HERV-derived syncytin-1 and syncytin-2 are localized in the plasma membrane of cells and physiologically expressed during pregnancy. The current study aimed to determine whether the epitopes of syncytins can trigger an immune response leading to APS in genetically predisposed individuals.
Methods: The TepiTool, ABCpred, and DiscoTope servers were utilized to predict T-cell and B-cell epitopes by inputting the FASTA sequences and 3D structures of syncytin-1, syncytin-2, and β2-glycoprotein I (β2GPI), which served as a reference antigen for APS. T-cell epitopes were selected based on their binding to a panel of human leukocyte antigen (HLA) class II alleles associated with APS according to the literature. Epitope predictions for the different proteins were statistically compared using GraphPad Prism.
Results: For syncytin-1, we identified a total of 721 T-cell epitopes, 51 linear B-cell epitopes, and up to 40 conformational epitopes. For syncytin-2, we predicted 705 T-cell epitopes and 28 linear B-cell epitopes, but a lower number of conformational epitopes, which also exhibited lower B-cell receptor (BCR)-binding scores. The predicted T-cell and B-cell conformational epitopes of both syncytin-1 and syncytin-2 demonstrated significantly higher binding affinity to selected HLA alleles and BCR compared with β2GPI. Furthermore, syncytin-1 exhibited significantly higher immunogenicity than syncytin-2.
Conclusions: Both syncytin-1 and syncytin-2 are computationally endowed with potential epitopes that may activate either T cells or B cells in individuals genetically predisposed to APS. While these findings may illuminate the possible role of HERVs in the development of APS, they warrant validation in further laboratory studies.