Mary-Ann Puppa , Sabrina B. Bennstein , Henrike J. Fischer, Lothar Rink
{"title":"Zinc deficiency impairs the development of human regulatory B cells from purified B cells","authors":"Mary-Ann Puppa , Sabrina B. Bennstein , Henrike J. Fischer, Lothar Rink","doi":"10.1016/j.jtemb.2024.127556","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc is a vital trace element, important for many different immune processes and adequate functionality. B cell development is known to be dependent on sufficient zinc supply. Recently a regulatory B cell (Breg) population has been identified, as CD19<sup>+</sup>IL-10<sup>+</sup> B cells, able to regulate immune responses by secretion of anti-inflammatory cytokines, such as IL-10. Due to their promotion of an anti-inflammatory milieu, Bregs could reduce or might even prevent excessive pro-inflammatory responses. Hence, having and maintaining Bregs could be interesting for patients suffering from allergies, asthma, and autoimmune diseases. Therefore, understanding Breg generation, required signaling, and their developmental requirements are important. Since our group could previously show that zinc is important for regulatory T cells, we aimed to determine the effect of zinc deficiency on Breg development from human peripheral blood CD19<sup>+</sup> B cells. We observed highest Breg generation with a combined stimulus of CD40L and the toll like receptor (TLR) ligand, CpG-ODN2006. Using this stimulus, we observed that zinc deficient medium significantly decreased Breg generation from purified B cells. This was not seen in Bregs generated from peripheral blood mononuclear cells (PBMCs) without B cell enrichment suggesting a compensatory mechanism. In line with literature, our data also confirms Bregs develop from CD19<sup>+</sup> B cells, since total CD19<sup>+</sup> frequencies remained unchanged, while Breg frequencies varied between stimuli and zinc media conditions. Our study shows for the first time that zinc deficiency significantly impairs Breg development, which provides an important new perspective for clinical applications and therapeutic strategies.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127556"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X24001767","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc is a vital trace element, important for many different immune processes and adequate functionality. B cell development is known to be dependent on sufficient zinc supply. Recently a regulatory B cell (Breg) population has been identified, as CD19+IL-10+ B cells, able to regulate immune responses by secretion of anti-inflammatory cytokines, such as IL-10. Due to their promotion of an anti-inflammatory milieu, Bregs could reduce or might even prevent excessive pro-inflammatory responses. Hence, having and maintaining Bregs could be interesting for patients suffering from allergies, asthma, and autoimmune diseases. Therefore, understanding Breg generation, required signaling, and their developmental requirements are important. Since our group could previously show that zinc is important for regulatory T cells, we aimed to determine the effect of zinc deficiency on Breg development from human peripheral blood CD19+ B cells. We observed highest Breg generation with a combined stimulus of CD40L and the toll like receptor (TLR) ligand, CpG-ODN2006. Using this stimulus, we observed that zinc deficient medium significantly decreased Breg generation from purified B cells. This was not seen in Bregs generated from peripheral blood mononuclear cells (PBMCs) without B cell enrichment suggesting a compensatory mechanism. In line with literature, our data also confirms Bregs develop from CD19+ B cells, since total CD19+ frequencies remained unchanged, while Breg frequencies varied between stimuli and zinc media conditions. Our study shows for the first time that zinc deficiency significantly impairs Breg development, which provides an important new perspective for clinical applications and therapeutic strategies.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.