Accelerated discovery of polymer donors for organic solar cells through machine learning: From library creation to performance forecasting.

Mudassir Hussain Tahir, Aftab Farrukh, Faleh Zafer Alqahtany, Amir Badshah, Ibrahim A Shaaban, Mohammed A Assiri
{"title":"Accelerated discovery of polymer donors for organic solar cells through machine learning: From library creation to performance forecasting.","authors":"Mudassir Hussain Tahir, Aftab Farrukh, Faleh Zafer Alqahtany, Amir Badshah, Ibrahim A Shaaban, Mohammed A Assiri","doi":"10.1016/j.saa.2024.125298","DOIUrl":null,"url":null,"abstract":"<p><p>The design of novel polymer donors for organic solar cells has been a major research focus for decades, but discovering unique materials remains challenging due to the high cost of experimentation. In this study, machine learning models are employed to predict power conversion efficiency (PCE), Mordred descriptors are used for model training. Among the four machine learning models evaluated, the gradient boosting regressor emerged as the best-performing model. Additionally, a chemical library of polymer donors was generated and analyzed using various measures. 30 donors with highest PCE are selected and their synthetic accessibility is evaluated. Similarity analysis has indicated much resemblance in selected polymer donors.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"326 ","pages":"125298"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The design of novel polymer donors for organic solar cells has been a major research focus for decades, but discovering unique materials remains challenging due to the high cost of experimentation. In this study, machine learning models are employed to predict power conversion efficiency (PCE), Mordred descriptors are used for model training. Among the four machine learning models evaluated, the gradient boosting regressor emerged as the best-performing model. Additionally, a chemical library of polymer donors was generated and analyzed using various measures. 30 donors with highest PCE are selected and their synthetic accessibility is evaluated. Similarity analysis has indicated much resemblance in selected polymer donors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习加速发现有机太阳能电池的聚合物供体:从资料库创建到性能预测。
几十年来,为有机太阳能电池设计新型聚合物供体一直是研究的重点,但由于实验成本高昂,发现独特的材料仍具有挑战性。本研究采用机器学习模型预测功率转换效率(PCE),并使用 Mordred 描述符进行模型训练。在评估的四种机器学习模型中,梯度提升回归器成为表现最佳的模型。此外,还生成了一个聚合物供体化学库,并使用各种方法对其进行了分析。选出了 30 个 PCE 最高的供体,并对其合成可得性进行了评估。相似性分析表明,所选的聚合物供体有很多相似之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Age estimation of Phormia regina pupae based on ATR-FTIR and chemometrics. Exploring the charge transfer enhancement mechanism in selective SERS detection with Mo1-xWxS2@Ag2S nanosheets. Improving monitoring of dissolved organic matter from the wastewater treatment plant to the receiving environment: A new high-frequency in situ fluorescence sensor capable of analyzing 29 pairs of Ex/Em wavelengths. Theoretical study of excited state dynamics of a ratiometric fluorescent probe for detection of SO2 derivatives. A Dicyanoisophorone-based Fluorescent Turn-on Probe for Rapid Detecting Thiophenol in Aqueous Medium and Living Cell Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1