Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY Cell Death & Disease Pub Date : 2024-10-26 DOI:10.1038/s41419-024-07149-9
Katarina Vlajic, Wenjun Bie, Milica B Gilic, Angela L Tyner
{"title":"Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice.","authors":"Katarina Vlajic, Wenjun Bie, Milica B Gilic, Angela L Tyner","doi":"10.1038/s41419-024-07149-9","DOIUrl":null,"url":null,"abstract":"<p><p>Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-024-07149-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ptk6-/- 雄性小鼠小肠中琥珀酸诱导的 2 型免疫激活和分泌细胞生成受损。
蛋白酪氨酸激酶 6(PTK6)是一种细胞内酪氨酸激酶,与酪氨酸激酶 SRC 家族关系密切。它在上皮内衬中表达,调节肠上皮的再生和修复。对公开数据集的分析表明,当2型免疫激活时,Ptk6在簇细胞中上调。我们发现,干扰 Ptk6 会影响参与肠道免疫反应的基因表达。在雄性而非雌性小鼠体内施用琥珀酸(模拟感染并激活簇细胞)会发现先天性免疫反应的激活依赖于 PTK6。与所有野生型小鼠和Ptk6-/-雌性小鼠相反,Ptk6-/-雄性小鼠在琥珀酸处理后不会激活先天性免疫或上调簇细胞和上睑分泌细胞系的分化。从机理上讲,我们发现 PTK6 在雄性小鼠而非雌性小鼠的肠道器官组织中调控簇细胞效应功能和 2 型先天性免疫激活所需的基因 Il25 和 Irag2。在克罗恩病患者中,PTK6 在肠道非炎症区域的簇细胞中上调。这些数据强调了 PTK6 在肠道先天性免疫性别差异中的作用,并为 IL-25 的调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
期刊最新文献
Author Correction: EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by up-regulating cell cycle related genes in lung cancer. VCP enhances autophagy-related osteosarcoma progression by recruiting USP2 to inhibit ubiquitination and degradation of FASN. G9a/DNMT1 co-targeting inhibits non-small cell lung cancer growth and reprograms tumor cells to respond to cancer-drugs through SCARA5 and AOX1. Inhibition of mitochondrial OMA1 ameliorates osteosarcoma tumorigenesis. Ror2 signaling regulated by differential Wnt proteins determines pathological fate of muscle mesenchymal progenitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1