Junfu Yu, Mehboob Hussain, Mingqi Wu, Chunlan Shi, Shini Li, Yuanxia Ji, Sikandar Hussain, Deqiang Qin, Chun Xiao, Guoxing Wu
{"title":"Whole-Genome Sequencing of the Entomopathogenic Fungus <i>Fusarium solani</i> KMZW-1 and Its Efficacy Against <i>Bactrocera dorsalis</i>.","authors":"Junfu Yu, Mehboob Hussain, Mingqi Wu, Chunlan Shi, Shini Li, Yuanxia Ji, Sikandar Hussain, Deqiang Qin, Chun Xiao, Guoxing Wu","doi":"10.3390/cimb46100688","DOIUrl":null,"url":null,"abstract":"<p><p><i>Fusarium solani</i> KMZW-1 is recognized for its potential as a biocontrol agent against agricultural and forestry pests, particularly due to its compatibility with integrated pest management (IPM) strategies. This study aimed to investigate the complete genome of <i>F. solani</i> KMZW-1 and assess its pathogenicity against <i>Bactrocera dorsalis</i>. Whole-genome sequencing revealed a genome size of 47,239,278 bp, comprising 27 contigs, with a GC content of 51.16% and fungus identified as <i>F. solani</i> KMZW-1. The genome completeness was assessed as 97.93% using BUSCO analysis, the DFVF sequence identifier was <i>Fusarium</i> 0G092560.1, and AntiSMASH analysis identified 35 gene clusters associated with secondary metabolite biosynthesis, providing insights into the genetic basis of its pathogenic mechanisms and biocontrol potential. Comparative genomic analysis found 269 unique genes for <i>F. solani</i> KMZW-1, and collinearity analysis exhibited a high degree of synteny with <i>Fusarium solani-melongenae</i>. The pathogenicity of <i>F. solani</i> KMZW-1 was assessed using concentrations ranging from 1 × 10<sup>4</sup> to 1 × 10<sup>11</sup> conidia/mL. Higher concentrations (1 × 10<sup>10</sup> to 1 × 10<sup>11</sup> conidia/mL) resulted in significantly increased cumulative mortality rates of <i>B. dorsalis</i> adults compared to the control group. Notably, the pathogenicity was higher in male adults than in females. Probit analysis yielded LC<sub>50</sub> (50% lethal concentration) values of 5.662 for female and 4.486 for male <i>B. dorsalis</i> adults. In summary, <i>F. solani</i>, KMZW-1 exhibits strong insecticidal activity against <i>B. dorsalis</i> and shows potential as a biocontrol agent with IPM strategies. These findings provide robust genomic evidence supporting the use of <i>F. solani</i> KMZW-1 in managing against <i>B. dorsalis</i> populations.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb46100688","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium solani KMZW-1 is recognized for its potential as a biocontrol agent against agricultural and forestry pests, particularly due to its compatibility with integrated pest management (IPM) strategies. This study aimed to investigate the complete genome of F. solani KMZW-1 and assess its pathogenicity against Bactrocera dorsalis. Whole-genome sequencing revealed a genome size of 47,239,278 bp, comprising 27 contigs, with a GC content of 51.16% and fungus identified as F. solani KMZW-1. The genome completeness was assessed as 97.93% using BUSCO analysis, the DFVF sequence identifier was Fusarium 0G092560.1, and AntiSMASH analysis identified 35 gene clusters associated with secondary metabolite biosynthesis, providing insights into the genetic basis of its pathogenic mechanisms and biocontrol potential. Comparative genomic analysis found 269 unique genes for F. solani KMZW-1, and collinearity analysis exhibited a high degree of synteny with Fusarium solani-melongenae. The pathogenicity of F. solani KMZW-1 was assessed using concentrations ranging from 1 × 104 to 1 × 1011 conidia/mL. Higher concentrations (1 × 1010 to 1 × 1011 conidia/mL) resulted in significantly increased cumulative mortality rates of B. dorsalis adults compared to the control group. Notably, the pathogenicity was higher in male adults than in females. Probit analysis yielded LC50 (50% lethal concentration) values of 5.662 for female and 4.486 for male B. dorsalis adults. In summary, F. solani, KMZW-1 exhibits strong insecticidal activity against B. dorsalis and shows potential as a biocontrol agent with IPM strategies. These findings provide robust genomic evidence supporting the use of F. solani KMZW-1 in managing against B. dorsalis populations.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.