{"title":"Invasive Ant Detection: Evaluating Honeybee Learning and Discrimination Abilities for Detecting <i>Solenopsis invicta</i> Odor.","authors":"Suwimol Chinkangsadarn, Lekhnath Kafle","doi":"10.3390/insects15100808","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive red imported fire ants (<i>Solenopsis invicta</i>) create a serious threat to public safety, agriculture, biodiversity, and the local economy, necessitating early detection and surveillance, which are currently time-consuming and dependent on the inspector's expertise. This study marks an initial investigation into the potential of honeybees (<i>Apis mellifera</i>) to detect and discriminate the odor of <i>S. invicta</i> through the olfactory conditioning of proboscis extension responses. Deceased <i>S. invicta</i> were used as conditioned stimuli to ensure relevance to non-infested areas. The results showed that the bees rapidly learned to respond to deceased ant odors, with response levels significantly increasing at higher odor intensities. Bees exhibited generalization across the odors of 25 minor workers, 21 median workers, 1 major worker, and 1 female alate. When conditioned with deceased ant odors, bees effectively recognized live ants, particularly when trained on a single minor worker. Discrimination abilities varied by species and were higher when <i>S. invicta</i> was paired with <i>Polyrhachis dives</i> and <i>Nylanderia yaeyamensis</i>, and lower with <i>S. geminata</i>, <i>Pheidole rabo</i>, and <i>Pheidole fervens</i>. Notably, discrimination improved significantly with the application of latent inhibition. These findings suggest that trained honeybees have the potential to detect <i>S. invicta</i>. Further refinement of this approach could enhance its effectiveness for detection and surveillance.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100808","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Invasive red imported fire ants (Solenopsis invicta) create a serious threat to public safety, agriculture, biodiversity, and the local economy, necessitating early detection and surveillance, which are currently time-consuming and dependent on the inspector's expertise. This study marks an initial investigation into the potential of honeybees (Apis mellifera) to detect and discriminate the odor of S. invicta through the olfactory conditioning of proboscis extension responses. Deceased S. invicta were used as conditioned stimuli to ensure relevance to non-infested areas. The results showed that the bees rapidly learned to respond to deceased ant odors, with response levels significantly increasing at higher odor intensities. Bees exhibited generalization across the odors of 25 minor workers, 21 median workers, 1 major worker, and 1 female alate. When conditioned with deceased ant odors, bees effectively recognized live ants, particularly when trained on a single minor worker. Discrimination abilities varied by species and were higher when S. invicta was paired with Polyrhachis dives and Nylanderia yaeyamensis, and lower with S. geminata, Pheidole rabo, and Pheidole fervens. Notably, discrimination improved significantly with the application of latent inhibition. These findings suggest that trained honeybees have the potential to detect S. invicta. Further refinement of this approach could enhance its effectiveness for detection and surveillance.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.