Natural Products from Marine-Derived Fungi with Anti-Inflammatory Activity.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL Marine Drugs Pub Date : 2024-09-25 DOI:10.3390/md22100433
Yikang Qiu, Shiji Chen, Miao Yu, Jueying Shi, Jiayu Liu, Xiaoyang Li, Jiaxing Chen, Xueping Sun, Guolei Huang, Caijuan Zheng
{"title":"Natural Products from Marine-Derived Fungi with Anti-Inflammatory Activity.","authors":"Yikang Qiu, Shiji Chen, Miao Yu, Jueying Shi, Jiayu Liu, Xiaoyang Li, Jiaxing Chen, Xueping Sun, Guolei Huang, Caijuan Zheng","doi":"10.3390/md22100433","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body's defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various diseases, such as heart disease, diabetes, Alzheimer's disease, atherosclerosis, rheumatoid arthritis, and even certain cancers. Marine-derived fungi represent promising sources of structurally novel bioactive natural products, and have been a focus of research for the development of anti-inflammatory drugs. This review covers secondary metabolites with anti-inflammatory activities from marine-derived fungi, over the period spanning August 2018 to July 2024. A total of 285 anti-inflammatory metabolites, including 156 novel compounds and 11 with novel skeleton structures, are described. Their structures are categorized into five categories: terpenoids, polyketides, nitrogen-containing compounds, steroids, and other classes. The biological targets, as well as the in vitro and in vivo screening models, were surveyed and statistically summarized. This paper aims to offer valuable insights to researchers in the exploration of natural products and the discovery of anti-inflammatory drugs.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509926/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100433","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammation is considered as one of the most primary protective innate immunity responses, closely related to the body's defense mechanism for responding to chemical, biological infections, or physical injuries. Furthermore, prolonged inflammation is undesirable, playing an important role in the development of various diseases, such as heart disease, diabetes, Alzheimer's disease, atherosclerosis, rheumatoid arthritis, and even certain cancers. Marine-derived fungi represent promising sources of structurally novel bioactive natural products, and have been a focus of research for the development of anti-inflammatory drugs. This review covers secondary metabolites with anti-inflammatory activities from marine-derived fungi, over the period spanning August 2018 to July 2024. A total of 285 anti-inflammatory metabolites, including 156 novel compounds and 11 with novel skeleton structures, are described. Their structures are categorized into five categories: terpenoids, polyketides, nitrogen-containing compounds, steroids, and other classes. The biological targets, as well as the in vitro and in vivo screening models, were surveyed and statistically summarized. This paper aims to offer valuable insights to researchers in the exploration of natural products and the discovery of anti-inflammatory drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有抗炎活性的海洋真菌天然产物
炎症被认为是最主要的先天性免疫保护反应之一,与人体应对化学、生物感染或物理损伤的防御机制密切相关。此外,长期的炎症是不可取的,它在各种疾病的发展中起着重要作用,如心脏病、糖尿病、阿尔茨海默病、动脉粥样硬化、类风湿性关节炎,甚至某些癌症。海洋源真菌是结构新颖、具有生物活性的天然产品的重要来源,也是开发抗炎药物的研究重点。本综述涵盖 2018 年 8 月至 2024 年 7 月期间海洋源真菌中具有抗炎活性的次级代谢物。共介绍了 285 种抗炎代谢物,包括 156 种新型化合物和 11 种具有新型骨架结构的化合物。它们的结构分为五类:萜类、多酮类、含氮化合物、类固醇和其他类别。对生物靶标以及体外和体内筛选模型进行了调查和统计总结。本文旨在为研究人员探索天然产物和发现抗炎药物提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
期刊最新文献
Antioxidative and Anti-Atopic Dermatitis Effects of Peptides Derived from Hydrolyzed Sebastes schlegelii Tail By-Products. Metabolite Profiling of Macroalgae: Biosynthesis and Beneficial Biological Properties of Active Compounds. Characterization of Phytoplankton-Derived Amino Acids and Tracing the Source of Organic Carbon Using Stable Isotopes in the Amundsen Sea. Discovery of Anti-Inflammatory Alkaloids from Sponge Stylissa massa Suggests New Biosynthetic Pathways for Pyrrole-Imidazole Alkaloids. Talaroterpenoids A-F: Six New Seco-Terpenoids from the Marine-Derived Fungus Talaromyces aurantiacus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1