{"title":"Diversity and Evolution of <i>NLR</i> Genes in <i>Citrus</i> Species.","authors":"Zhiwei Xiong, Wanshan Zhang, Hui Yin, Jiaxing Wan, Zhuozhuo Wu, Yuxia Gao","doi":"10.3390/biology13100822","DOIUrl":null,"url":null,"abstract":"<p><p><i>NLR</i> genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although <i>NLR</i> genes in many plant species have been extensively studied, the diversity of <i>NLR</i> genes in <i>citrus</i> remains largely unknown. Our analysis revealed significant variations in the copy numbers of <i>NLR</i> genes among these species. Gene duplication and recombination were identified as the major driving forces behind this diversity. Additionally, horizontal gene transfer (HGT) emerged as the principal mechanism responsible for the increase in <i>NLR</i> gene copy number in <i>A. buxifolia</i>. The <i>citrus NLR</i> genes were classified into four categories: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), RPW8-NBS-LRR (RNL), and NL. Our findings indicate that TNL, RNL, and CNL genes originated from NL genes through the acquisition of TIR and RPW8 domains, along with CC motifs, followed by the random loss of corresponding domains. Phylogenetic analysis suggested that <i>citrus NLR</i> genes originated alongside the species and underwent adaptive evolution, potentially playing crucial roles in the global colonization of <i>citrus</i>. This study provides important insights into the diversity of <i>citrus NLR</i> genes and serves as a foundational dataset for future research aimed at breeding disease-resistant <i>citrus</i> varieties.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100822","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NLR genes are crucial components of the effector-triggered immunity (ETI) system, responsible for recognizing pathogens and initiating immune responses. Although NLR genes in many plant species have been extensively studied, the diversity of NLR genes in citrus remains largely unknown. Our analysis revealed significant variations in the copy numbers of NLR genes among these species. Gene duplication and recombination were identified as the major driving forces behind this diversity. Additionally, horizontal gene transfer (HGT) emerged as the principal mechanism responsible for the increase in NLR gene copy number in A. buxifolia. The citrus NLR genes were classified into four categories: TIR-NBS-LRR (TNL), CC-NBS-LRR (CNL), RPW8-NBS-LRR (RNL), and NL. Our findings indicate that TNL, RNL, and CNL genes originated from NL genes through the acquisition of TIR and RPW8 domains, along with CC motifs, followed by the random loss of corresponding domains. Phylogenetic analysis suggested that citrus NLR genes originated alongside the species and underwent adaptive evolution, potentially playing crucial roles in the global colonization of citrus. This study provides important insights into the diversity of citrus NLR genes and serves as a foundational dataset for future research aimed at breeding disease-resistant citrus varieties.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.