Optically Pumped Terahertz Amplitude Modulation in Type-II Ge QD/Si Heterostructures Grown via Molecular Beam Epitaxy

Suprovat Ghosh, Abir Mukherjee, Sudarshan Singh, Samit K Ray, Ananjan Basu, Santanu Manna and Samaresh Das*, 
{"title":"Optically Pumped Terahertz Amplitude Modulation in Type-II Ge QD/Si Heterostructures Grown via Molecular Beam Epitaxy","authors":"Suprovat Ghosh,&nbsp;Abir Mukherjee,&nbsp;Sudarshan Singh,&nbsp;Samit K Ray,&nbsp;Ananjan Basu,&nbsp;Santanu Manna and Samaresh Das*,&nbsp;","doi":"10.1021/acsaom.4c0029810.1021/acsaom.4c00298","DOIUrl":null,"url":null,"abstract":"<p >This article explores group-IV germanium (Ge) quantum dots (QDs) on silicon-on-insulator (SOI) grown by molecular beam epitaxy (MBE) in order to explore their optical behavior in the terahertz (THz) regime. In this work, Ge QDs, pumped by an above bandgap near–infrared wavelength, exhibit THz amplitude modulation in the frequency range of 0.1–1.0 THz. The epitaxial Ge QDs outperform the reference SOI (170 nm top Si) substrate in THz amplitude modulation due to higher carrier generation in weakly confined dots compared to their bulk counterpart. This is further corroborated using a theoretical model based on the nonequilibrium Green’s function (NEGF) method. This model enables the calculation of photocarrier generated (PCG) and their confinement in the Ge QD region. Our model also reroutes the calculation from PCG to the corresponding plasma frequency and hence to refractive index and THz photoconductivity. Moreover, the photogenerated confined holes’ accumulation at the Ge QDs/Si interface is elevated after optical illumination, leading to decreased THz photoconductivity. This augmentation in THz photoconductivity contributes to a significant enhancement of THz modulation depth of ∼77% at Ge QDs/Si interfaces compared to bare SOI at 0.1 THz.</p>","PeriodicalId":29803,"journal":{"name":"ACS Applied Optical Materials","volume":"2 10","pages":"2085–2091 2085–2091"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Optical Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaom.4c00298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores group-IV germanium (Ge) quantum dots (QDs) on silicon-on-insulator (SOI) grown by molecular beam epitaxy (MBE) in order to explore their optical behavior in the terahertz (THz) regime. In this work, Ge QDs, pumped by an above bandgap near–infrared wavelength, exhibit THz amplitude modulation in the frequency range of 0.1–1.0 THz. The epitaxial Ge QDs outperform the reference SOI (170 nm top Si) substrate in THz amplitude modulation due to higher carrier generation in weakly confined dots compared to their bulk counterpart. This is further corroborated using a theoretical model based on the nonequilibrium Green’s function (NEGF) method. This model enables the calculation of photocarrier generated (PCG) and their confinement in the Ge QD region. Our model also reroutes the calculation from PCG to the corresponding plasma frequency and hence to refractive index and THz photoconductivity. Moreover, the photogenerated confined holes’ accumulation at the Ge QDs/Si interface is elevated after optical illumination, leading to decreased THz photoconductivity. This augmentation in THz photoconductivity contributes to a significant enhancement of THz modulation depth of ∼77% at Ge QDs/Si interfaces compared to bare SOI at 0.1 THz.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分子束外延生长的 II 型 Ge QD/Si 异质结构中的光泵浦太赫兹振幅调制
本文探讨了分子束外延(MBE)技术在硅绝缘体(SOI)上生长的第四族锗(Ge)量子点(QDs),以探索它们在太赫兹(THz)机制下的光学行为。在这项研究中,Ge QD 在高于带隙的近红外波长的泵浦作用下,在 0.1-1.0 太赫兹的频率范围内表现出太赫兹振幅调制。外延 Ge QD 在太赫兹振幅调制方面优于参考 SOI(170 nm 顶部硅)衬底,这是由于弱约束点中的载流子生成量高于其块状对应物。基于非平衡格林函数 (NEGF) 方法的理论模型进一步证实了这一点。该模型能够计算产生的光载流子(PCG)及其在 Ge QD 区域的约束。我们的模型还将计算从 PCG 转向相应的等离子体频率,进而转向折射率和太赫兹光电导率。此外,在光照之后,Ge QDs/Si 界面上光生成的封闭空穴堆积会增加,从而导致太赫兹光电导率降低。太赫兹光导率的提高使 Ge QDs/Si 界面的太赫兹调制深度在 0.1 太赫兹时比裸 SOI 界面显著提高了 ∼ 77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Optical Materials
ACS Applied Optical Materials 材料科学-光学材料-
CiteScore
1.10
自引率
0.00%
发文量
0
期刊介绍: ACS Applied Optical Materials is an international and interdisciplinary forum to publish original experimental and theoretical including simulation and modeling research in optical materials complementing the ACS Applied Materials portfolio. With a focus on innovative applications ACS Applied Optical Materials also complements and expands the scope of existing ACS publications that focus on fundamental aspects of the interaction between light and matter in materials science including ACS Photonics Macromolecules Journal of Physical Chemistry C ACS Nano and Nano Letters.The scope of ACS Applied Optical Materials includes high quality research of an applied nature that integrates knowledge in materials science chemistry physics optical science and engineering.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Growth of Few-Layer Molecular Crystals of PTCDI on Hexagonal Boron Nitride by Microspacing Air-Gap Sublimation Effect of Chemical Composition on the Optical Properties of Cr3+ Impurity in A3B5O12 Garnets (A = Lu, Y, Gd, La; B = Al, Ga, Sc) Fabricating Metallic–Dielectric Zirconium Nitride Thin Films for Photoelectric Conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1