Durga Prasad Pabba*, Nayak Ram, J. Kaarthik, Naveen Kumar Pabba and Annapureddy Venkateswarlu*,
{"title":"Enhancing Stray Magnetic Energy Harvesting with Flexible PVDF/CoFe2O4 Electrospun Fiber Composite Magneto-Mechano-Electric Generators","authors":"Durga Prasad Pabba*, Nayak Ram, J. Kaarthik, Naveen Kumar Pabba and Annapureddy Venkateswarlu*, ","doi":"10.1021/acsaelm.4c0117310.1021/acsaelm.4c01173","DOIUrl":null,"url":null,"abstract":"<p >This study introduces a highly flexible, vertically installed electrospun PVDF/CoFe<sub>2</sub>O<sub>4</sub> composite-based Magneto-Mechano-Electric (MME) generator designed to capture and utilize environmental stray magnetic noise, a prevalent form of waste energy from electrical power transmission systems. We fabricated highly flexible, freestanding magnetoelectric composite electrospun fibers by combining piezoelectric PVDF polymer and magnetostrictive CoFe<sub>2</sub>O<sub>4</sub>. XRD and FTIR analyses confirmed a significant enhancement in the ferroelectric β-phase content, reaching 86% with the incorporation of CoFe<sub>2</sub>O<sub>4</sub>. The electrostatic interaction mechanism between PVDF and CoFe<sub>2</sub>O<sub>4</sub> was explained and validated through Zeta potential and XPS analyses. The developed MME generator demonstrated a high output voltage and power density of 12.1 V and 174 μW/m<sup>2</sup>, respectively, under a low AC magnetic field of 6 Oe. The detailed mechanism of energy generation in the MME device has been explained. The fabricated MME device also demonstrated the highest magnetoelectric voltage coefficient (α<sub>MME</sub>) value of 224 V cm<sup>–1</sup> Oe<sup>–1</sup>, even in the absence of a magnetic bias DC field. The MME generator has demonstrated stable output harvesting performance across 50,000 testing cycles. This MME generator efficiently harvested low and weak parasitic magnetic noise from various electrical appliances, such as dryers, kettles, and iron boxes, thereby enabling a remote power supply to consumer electronics.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01173","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a highly flexible, vertically installed electrospun PVDF/CoFe2O4 composite-based Magneto-Mechano-Electric (MME) generator designed to capture and utilize environmental stray magnetic noise, a prevalent form of waste energy from electrical power transmission systems. We fabricated highly flexible, freestanding magnetoelectric composite electrospun fibers by combining piezoelectric PVDF polymer and magnetostrictive CoFe2O4. XRD and FTIR analyses confirmed a significant enhancement in the ferroelectric β-phase content, reaching 86% with the incorporation of CoFe2O4. The electrostatic interaction mechanism between PVDF and CoFe2O4 was explained and validated through Zeta potential and XPS analyses. The developed MME generator demonstrated a high output voltage and power density of 12.1 V and 174 μW/m2, respectively, under a low AC magnetic field of 6 Oe. The detailed mechanism of energy generation in the MME device has been explained. The fabricated MME device also demonstrated the highest magnetoelectric voltage coefficient (αMME) value of 224 V cm–1 Oe–1, even in the absence of a magnetic bias DC field. The MME generator has demonstrated stable output harvesting performance across 50,000 testing cycles. This MME generator efficiently harvested low and weak parasitic magnetic noise from various electrical appliances, such as dryers, kettles, and iron boxes, thereby enabling a remote power supply to consumer electronics.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.