One-Step Identification of Robot Physical Dynamic Parameters Considering the Velocity-Load Friction Model

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-21 DOI:10.1109/LRA.2024.3484133
Yian Qian;Lijin Fang;Jiqian Xu;Tangzhong Song;Guanghui Liu
{"title":"One-Step Identification of Robot Physical Dynamic Parameters Considering the Velocity-Load Friction Model","authors":"Yian Qian;Lijin Fang;Jiqian Xu;Tangzhong Song;Guanghui Liu","doi":"10.1109/LRA.2024.3484133","DOIUrl":null,"url":null,"abstract":"We propose a robot dynamic model to improve the accuracy of the identification, by introducing a friction model that takes into account the joint loads. Firstly, we analyze torque transfer in robot joints, assigning a physical meaning to motor inertia parameters. Then, we enhance the traditional friction model in identification by accounting for joint loads, presenting a new friction model with loads. Next, we employ a one-step method to directly identify both basic dynamic parameters and physical dynamic parameters of the robot. Experimental validation is conducted using a Rokea XMate3pro 7-DOF robot. Results demonstrate that our proposed dynamic model achieves higher accuracy in dynamic identification. It effectively describes the jitter phenomenon caused by motor torque when joints change the direction of motion. Furthermore, in identifying parameters for physical feasibility, our model outperforms traditional approaches by better fitting the dynamic of end joints.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"10890-10897"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723755/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robot dynamic model to improve the accuracy of the identification, by introducing a friction model that takes into account the joint loads. Firstly, we analyze torque transfer in robot joints, assigning a physical meaning to motor inertia parameters. Then, we enhance the traditional friction model in identification by accounting for joint loads, presenting a new friction model with loads. Next, we employ a one-step method to directly identify both basic dynamic parameters and physical dynamic parameters of the robot. Experimental validation is conducted using a Rokea XMate3pro 7-DOF robot. Results demonstrate that our proposed dynamic model achieves higher accuracy in dynamic identification. It effectively describes the jitter phenomenon caused by motor torque when joints change the direction of motion. Furthermore, in identifying parameters for physical feasibility, our model outperforms traditional approaches by better fitting the dynamic of end joints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑速度-负载摩擦模型的机器人物理动态参数的一步式识别
我们提出了一种机器人动态模型,通过引入考虑关节负载的摩擦模型来提高识别的准确性。首先,我们分析了机器人关节中的扭矩传递,为电机惯性参数赋予了物理意义。然后,我们通过考虑关节载荷来改进识别中的传统摩擦模型,提出了一种带载荷的新摩擦模型。接下来,我们采用一步法直接识别机器人的基本动态参数和物理动态参数。我们使用 Rokea XMate3pro 7-DOF 机器人进行了实验验证。结果表明,我们提出的动态模型在动态识别方面达到了更高的精度。它能有效地描述关节改变运动方向时电机扭矩引起的抖动现象。此外,在识别物理可行性参数时,我们的模型能更好地拟合末端关节的动态,因而优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1