Introducing Adaptive Continuous Adversarial Training (ACAT) to Enhance Machine Learning Robustness

Mohamed elShehaby;Aditya Kotha;Ashraf Matrawy
{"title":"Introducing Adaptive Continuous Adversarial Training (ACAT) to Enhance Machine Learning Robustness","authors":"Mohamed elShehaby;Aditya Kotha;Ashraf Matrawy","doi":"10.1109/LNET.2024.3442833","DOIUrl":null,"url":null,"abstract":"Adversarial training enhances the robustness of Machine Learning (ML) models against adversarial attacks. However, obtaining labeled training and adversarial training data in network/cybersecurity domains is challenging and costly. Therefore, this letter introduces Adaptive Continuous Adversarial Training (ACAT), a novel method that integrates adversarial training samples into the model during continuous learning sessions using real-world detected adversarial data. Experimental results with a SPAM detection dataset demonstrate that ACAT reduces the time required for adversarial sample detection compared to traditional processes (up to 4 times faster when dealing with 10,000 samples). Moreover, the accuracy of the under-attack ML-based SPAM filter increased from 69% to over 88% after just three retraining sessions.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"208-212"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10634900/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adversarial training enhances the robustness of Machine Learning (ML) models against adversarial attacks. However, obtaining labeled training and adversarial training data in network/cybersecurity domains is challenging and costly. Therefore, this letter introduces Adaptive Continuous Adversarial Training (ACAT), a novel method that integrates adversarial training samples into the model during continuous learning sessions using real-world detected adversarial data. Experimental results with a SPAM detection dataset demonstrate that ACAT reduces the time required for adversarial sample detection compared to traditional processes (up to 4 times faster when dealing with 10,000 samples). Moreover, the accuracy of the under-attack ML-based SPAM filter increased from 69% to over 88% after just three retraining sessions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
引入自适应连续对抗训练 (ACAT) 增强机器学习的鲁棒性
对抗性训练可增强机器学习(ML)模型在对抗性攻击面前的鲁棒性。然而,在网络/网络安全领域中获取标注训练和对抗训练数据具有挑战性且成本高昂。因此,这封信介绍了自适应连续对抗训练(ACAT),这是一种新方法,它在连续学习过程中利用真实世界检测到的对抗数据将对抗训练样本集成到模型中。使用 SPAM 检测数据集的实验结果表明,与传统方法相比,ACAT 缩短了对抗样本检测所需的时间(在处理 10,000 个样本时,快达 4 倍)。此外,仅经过三次再训练,基于欠攻击 ML 的 SPAM 过滤器的准确率就从 69% 提高到了 88% 以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1