Phosphorus release from sewage sludge and digestate driven by biological sulfate reduction: effect of feed sulfate concentration and thermal hydrolysis†
Francesco Di Capua, Stefano Papirio, Silvio Matassa, Francesco Pirozzi and Giovanni Esposito
{"title":"Phosphorus release from sewage sludge and digestate driven by biological sulfate reduction: effect of feed sulfate concentration and thermal hydrolysis†","authors":"Francesco Di Capua, Stefano Papirio, Silvio Matassa, Francesco Pirozzi and Giovanni Esposito","doi":"10.1039/D4EW00322E","DOIUrl":null,"url":null,"abstract":"<p >Phosphorus recovery from waste streams stands out as a strategic practice to ensure phosphorus availability to future generations. The release of phosphate mediated by biological sulfate reduction is an interesting bioprocess for phosphorus recovery from sewage sludge in wastewater treatment plants in which chemical phosphorus recovery is foreseen. This study investigates the effect of biological sulfate reduction at different feed sulfate concentrations (up to 8000 mg L<small><sup>−1</sup></small>) on the anaerobic phosphate release from both sewage sludge and digestate as well as the impact of sulfate addition on energy recovery from the sludge <em>via</em> biomethane production. During anaerobic digestion, up to 62.3% of the phosphate initially present in the sludge as iron(<small>III</small>) phosphate was released with 8000 mg L<small><sup>−1</sup></small> feed sulfate. However, biomethane production was significantly reduced (>40%) when sulfate was added at concentrations above 100 mg L<small><sup>−1</sup></small>. The use of thermal hydrolysis on the sludge digestate was found to be an effective strategy for phosphorus recovery from the sludge without compromising the biomethane production during anaerobic digestion. A phosphate release from iron(<small>III</small>) phosphate of up to 48.7% was obtained when adding 4000 mg L<small><sup>−1</sup></small> sulfate to the digestate previously hydrolyzed for 2 hours. Finally, the implementation potential of the proposed strategy in full-scale wastewater treatment plants is discussed.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2897-2905"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ew/d4ew00322e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00322e","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus recovery from waste streams stands out as a strategic practice to ensure phosphorus availability to future generations. The release of phosphate mediated by biological sulfate reduction is an interesting bioprocess for phosphorus recovery from sewage sludge in wastewater treatment plants in which chemical phosphorus recovery is foreseen. This study investigates the effect of biological sulfate reduction at different feed sulfate concentrations (up to 8000 mg L−1) on the anaerobic phosphate release from both sewage sludge and digestate as well as the impact of sulfate addition on energy recovery from the sludge via biomethane production. During anaerobic digestion, up to 62.3% of the phosphate initially present in the sludge as iron(III) phosphate was released with 8000 mg L−1 feed sulfate. However, biomethane production was significantly reduced (>40%) when sulfate was added at concentrations above 100 mg L−1. The use of thermal hydrolysis on the sludge digestate was found to be an effective strategy for phosphorus recovery from the sludge without compromising the biomethane production during anaerobic digestion. A phosphate release from iron(III) phosphate of up to 48.7% was obtained when adding 4000 mg L−1 sulfate to the digestate previously hydrolyzed for 2 hours. Finally, the implementation potential of the proposed strategy in full-scale wastewater treatment plants is discussed.
期刊介绍:
Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.