Microwave irradiation synthesis of CoFe2O4/rGO to activate peroxymonosulfate for the degradation of 2-aminobenzothiazole in water†

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-09-24 DOI:10.1039/D4EW00459K
Wei Wei, Shiqian Gao, Feiyue Qian, Chongjun Chen and Youyi Wu
{"title":"Microwave irradiation synthesis of CoFe2O4/rGO to activate peroxymonosulfate for the degradation of 2-aminobenzothiazole in water†","authors":"Wei Wei, Shiqian Gao, Feiyue Qian, Chongjun Chen and Youyi Wu","doi":"10.1039/D4EW00459K","DOIUrl":null,"url":null,"abstract":"<p >Reduced graphene oxide modified CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> (CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO) magnetic nanoparticles (MNPs) were synthesized by employing an <em>in situ</em> crystallization microwave irradiation method. The morphology and textural properties of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO were characterized using SEM, TEM, BET/BJH and XPS. GO was reduced to rGO <em>via</em> the thermal catalysis of Co(acac)<small><sub>2</sub></small>, which contributed to expanding the effective microwave absorption bandwidth of carbon-based materials. The lattice stability of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> effectively improved Snoek's limit and protected the catalytic active site distribution of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO nanoparticles. The CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO composites were selected as a heterogeneous catalyst to initiate the activation of peroxymonosulfate (PMS) for the generation of reactive oxygen species (ROS) and degrade 2-aminobenzothiazole (ABT) in a water sample. Under optimal conditions, the coupling of CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO and PMS can completely degrade ABT in aqueous solutions within 90 minutes. The effect of inorganic anions, metal cations and humic acid (HA) on the degradation efficiency of ABT was explored. Experimental results showed that the presence of HA and low concentrations of Cu<small><sup>2+</sup></small> enhanced the process performance remarkably, while the addition of NO<small><sub>3</sub></small><small><sup>−</sup></small>, SO<small><sub>4</sub></small><small><sup>2−</sup></small>, Zn<small><sup>2+</sup></small>, Cd<small><sup>2+</sup></small> and high concentrations of Cu<small><sup>2+</sup></small> suppressed the degradation of ABT. Meanwhile, the absence of Cl<small><sup>−</sup></small> and HCO<small><sub>3</sub></small><small><sup>−</sup></small> presented no significant influence on the degradation. Radical quenching experiments indicated that SO<small><sub>4</sub></small><small><sup>−</sup></small>·, ·OH and non-free radicals of <small><sup>1</sup></small>O<small><sub>2</sub></small> were involved in the CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO-PMS system, with the former two being the dominating radical species. A degradation efficiency of 100% was obtained when the proposed method was applied to the degradation of ABT in actual water samples. The CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/rGO catalyst-activated PMS processes offered a reference to eliminate refractory organics in water.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 11","pages":" 2946-2960"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ew/d4ew00459k","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reduced graphene oxide modified CoFe2O4 (CoFe2O4/rGO) magnetic nanoparticles (MNPs) were synthesized by employing an in situ crystallization microwave irradiation method. The morphology and textural properties of CoFe2O4/rGO were characterized using SEM, TEM, BET/BJH and XPS. GO was reduced to rGO via the thermal catalysis of Co(acac)2, which contributed to expanding the effective microwave absorption bandwidth of carbon-based materials. The lattice stability of CoFe2O4 effectively improved Snoek's limit and protected the catalytic active site distribution of CoFe2O4/rGO nanoparticles. The CoFe2O4/rGO composites were selected as a heterogeneous catalyst to initiate the activation of peroxymonosulfate (PMS) for the generation of reactive oxygen species (ROS) and degrade 2-aminobenzothiazole (ABT) in a water sample. Under optimal conditions, the coupling of CoFe2O4/rGO and PMS can completely degrade ABT in aqueous solutions within 90 minutes. The effect of inorganic anions, metal cations and humic acid (HA) on the degradation efficiency of ABT was explored. Experimental results showed that the presence of HA and low concentrations of Cu2+ enhanced the process performance remarkably, while the addition of NO3, SO42−, Zn2+, Cd2+ and high concentrations of Cu2+ suppressed the degradation of ABT. Meanwhile, the absence of Cl and HCO3 presented no significant influence on the degradation. Radical quenching experiments indicated that SO4·, ·OH and non-free radicals of 1O2 were involved in the CoFe2O4/rGO-PMS system, with the former two being the dominating radical species. A degradation efficiency of 100% was obtained when the proposed method was applied to the degradation of ABT in actual water samples. The CoFe2O4/rGO catalyst-activated PMS processes offered a reference to eliminate refractory organics in water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波辐照合成 CoFe2O4/rGO 活化过硫酸锰以降解水中的 2-aminobenzothiazole†
采用原位结晶微波辐照法合成了还原氧化石墨烯修饰的 CoFe2O4(CoFe2O4/rGO)磁性纳米粒子(MNPs)。使用 SEM、TEM、BET/BJH 和 XPS 对 CoFe2O4/rGO 的形貌和纹理特性进行了表征。通过 Co(acac)2 的热催化,GO 被还原成 rGO,这有助于扩大碳基材料的有效微波吸收带宽。CoFe2O4 的晶格稳定性有效改善了 Snoek 极限,保护了 CoFe2O4/rGO 纳米粒子的催化活性位点分布。研究人员选择 CoFe2O4/rGO 复合材料作为异相催化剂,用于活化过一硫酸盐(PMS)以产生活性氧(ROS),并降解水样中的 2-氨基苯并噻唑(ABT)。在最佳条件下,CoFe2O4/rGO 与 PMS 的耦合可在 90 分钟内完全降解水溶液中的 ABT。实验还探讨了无机阴离子、金属阳离子和腐植酸(HA)对 ABT 降解效率的影响。实验结果表明,HA 和低浓度 Cu2+ 的存在显著提高了工艺性能,而加入 NO3-、SO42-、Zn2+、Cd2+ 和高浓度 Cu2+ 则抑制了 ABT 的降解。同时,Cl- 和 HCO3- 的缺失对降解没有明显影响。自由基淬灭实验表明,CoFe2O4/rGO-PMS 体系中存在 SO4--、-OH 和 1O2 的非自由基,其中前两者是主要的自由基种类。将所提出的方法应用于实际水样中 ABT 的降解时,降解效率达到了 100%。CoFe2O4/rGO 催化剂激活的 PMS 工艺为消除水中的难降解有机物提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
Back cover Wastewater surveillance for public health: Quo Vadis? Back cover Assessment and application of GeneXpert rapid testing for respiratory viruses in school wastewater† Applicability of β-lactamase entrapped agarose discs for removal of doripenem antibiotic: reusability and scale-up studies†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1