Preservation of emotional context in tweet embeddings on social networking sites

IF 0.8 Q4 ROBOTICS Artificial Life and Robotics Pub Date : 2024-10-08 DOI:10.1007/s10015-024-00974-3
Osamu Maruyama, Asato Yoshinaga, Ken-ichi Sawai
{"title":"Preservation of emotional context in tweet embeddings on social networking sites","authors":"Osamu Maruyama,&nbsp;Asato Yoshinaga,&nbsp;Ken-ichi Sawai","doi":"10.1007/s10015-024-00974-3","DOIUrl":null,"url":null,"abstract":"<div><p>In communication, emotional information is crucial, yet its preservation in tweet embeddings remains a challenge. This study aims to address this gap by exploring three distinct methods for generating embedding vectors of tweets: word2vec models, pre-trained BERT models, and fine-tuned BERT models. We conducted an analysis to assess the degree to which emotional information is conserved in the resulting embedding vectors. Our findings indicate that the fine-tuned BERT model exhibits a higher level of preservation of emotional information compared to other methods. These results underscore the importance of utilizing advanced natural language processing techniques for preserving emotional context in text data, with potential implications for enhancing sentiment analysis and understanding human communication in social media contexts.</p></div>","PeriodicalId":46050,"journal":{"name":"Artificial Life and Robotics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10015-024-00974-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10015-024-00974-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In communication, emotional information is crucial, yet its preservation in tweet embeddings remains a challenge. This study aims to address this gap by exploring three distinct methods for generating embedding vectors of tweets: word2vec models, pre-trained BERT models, and fine-tuned BERT models. We conducted an analysis to assess the degree to which emotional information is conserved in the resulting embedding vectors. Our findings indicate that the fine-tuned BERT model exhibits a higher level of preservation of emotional information compared to other methods. These results underscore the importance of utilizing advanced natural language processing techniques for preserving emotional context in text data, with potential implications for enhancing sentiment analysis and understanding human communication in social media contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在社交网站的推文嵌入中保留情感语境
在通信中,情感信息至关重要,但在推文嵌入中保留情感信息仍是一项挑战。本研究旨在通过探索生成推文嵌入向量的三种不同方法来填补这一空白:word2vec 模型、预训练 BERT 模型和微调 BERT 模型。我们进行了一项分析,以评估情感信息在生成的嵌入向量中的保留程度。我们的研究结果表明,与其他方法相比,微调 BERT 模型对情感信息的保留程度更高。这些结果凸显了利用先进的自然语言处理技术保留文本数据中情感语境的重要性,对加强情感分析和理解社交媒体语境中的人类交流具有潜在的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
22.20%
发文量
101
期刊介绍: Artificial Life and Robotics is an international journal publishing original technical papers and authoritative state-of-the-art reviews on the development of new technologies concerning artificial life and robotics, especially computer-based simulation and hardware for the twenty-first century. This journal covers a broad multidisciplinary field, including areas such as artificial brain research, artificial intelligence, artificial life, artificial living, artificial mind research, brain science, chaos, cognitive science, complexity, computer graphics, evolutionary computations, fuzzy control, genetic algorithms, innovative computations, intelligent control and modelling, micromachines, micro-robot world cup soccer tournament, mobile vehicles, neural networks, neurocomputers, neurocomputing technologies and applications, robotics, robus virtual engineering, and virtual reality. Hardware-oriented submissions are particularly welcome. Publishing body: International Symposium on Artificial Life and RoboticsEditor-in-Chiei: Hiroshi Tanaka Hatanaka R Apartment 101, Hatanaka 8-7A, Ooaza-Hatanaka, Oita city, Oita, Japan 870-0856 ©International Symposium on Artificial Life and Robotics
期刊最新文献
AI robots pioneer the Smarter Inclusive Society Research on coordinated control strategy of distributed static synchronous series compensator based on multi-objective optimization immune algorithm Probabilistic model for high-level intention estimation and trajectory prediction in urban environments Preservation of emotional context in tweet embeddings on social networking sites Spiking neural networks-based generation of caterpillar-like soft robot crawling motions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1