{"title":"Relay C(sp3)-H bond trifluoromethylthiolation and amidation by visible light photoredox catalysis","authors":"Junheng Liu, Suqi Yang, Shunruo Yao, Chengjian Zhu, Yong Liu, Weipeng Li, Jin Xie","doi":"10.1007/s11426-024-2259-7","DOIUrl":null,"url":null,"abstract":"<div><p>Selective functionaliz0ation of C(sp<sup>3</sup>)–H bonds is a straightforward and practical method to construct complex molecule skeletons. In this field, direct transformation of unactivated C(sp<sup>3</sup>)–H bonds into C(sp<sup>3</sup>)–SCF<sub>3</sub> architectures is still a great challenge. We report a highly selective trifluoromethylthiolation of unactivated aliphatic C(sp<sup>3</sup>)–H bonds by combination of proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) strategy. A wide range of structurally diverse alkyl trifluoromethyl sulfides are obtained. Furthermore, the use of two different photocatalysts can realize an unprecedented trifluoromethylthiolation and amidation cascade of different C(sp<sup>3</sup>)–H bonds. It can afford a good access to bifunctionalized molecules in synthetically useful yields.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 11","pages":"3844 - 3850"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2259-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective functionaliz0ation of C(sp3)–H bonds is a straightforward and practical method to construct complex molecule skeletons. In this field, direct transformation of unactivated C(sp3)–H bonds into C(sp3)–SCF3 architectures is still a great challenge. We report a highly selective trifluoromethylthiolation of unactivated aliphatic C(sp3)–H bonds by combination of proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) strategy. A wide range of structurally diverse alkyl trifluoromethyl sulfides are obtained. Furthermore, the use of two different photocatalysts can realize an unprecedented trifluoromethylthiolation and amidation cascade of different C(sp3)–H bonds. It can afford a good access to bifunctionalized molecules in synthetically useful yields.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.