Thermal decomposition temperature-dependent bonding performance of Ag nanostructures derived from metal–organic decomposition

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-10-15 DOI:10.1007/s10853-024-10250-1
Chuncheng Wang, Hiroaki Tatsumi, Hiroshi Nishikawa
{"title":"Thermal decomposition temperature-dependent bonding performance of Ag nanostructures derived from metal–organic decomposition","authors":"Chuncheng Wang,&nbsp;Hiroaki Tatsumi,&nbsp;Hiroshi Nishikawa","doi":"10.1007/s10853-024-10250-1","DOIUrl":null,"url":null,"abstract":"<div><p>In wide-bandgap semiconductor power device packaging, die bonding refers to attaching the die to substrate. Thereby, the process temperature of Ag sintering for the die bonding should be low to prevent damage to fragile dies. Herein, an organic-free strategy using Ag nanostructures derived from the thermal decomposition of metal–organic decomposition (MOD) was proposed to achieve low-temperature bonding. Significant effects on bonding performance were determined by the thermal decomposition temperature, which in turn determined the organic content and sintering degree of Ag nanostructures. At a low thermal decomposition temperature of 160 °C, incomplete decomposition resulted in high organic content in the Ag nanostructures, causing large pores inside the Ag joints owing to the generation of gaseous products. Owing to the Ag particles with naked surfaces and wide size distribution, the Ag nanostructure obtained at 180 °C showed an excellent bonding performance, resulting in a high shear strength of 31.1 MPa at a low bonding temperature of 160 °C. As the thermal decomposition temperature was 200 °C, sintering among Ag particles increased the particle size, resulting in a reduction of surface energy and driving force for sintering. We think that uncovering this underlying mechanism responsible for the bonding performance will promote the application of Ag MOD in the die bonding of WBG power devices.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 40","pages":"19038 - 19056"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-024-10250-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10250-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In wide-bandgap semiconductor power device packaging, die bonding refers to attaching the die to substrate. Thereby, the process temperature of Ag sintering for the die bonding should be low to prevent damage to fragile dies. Herein, an organic-free strategy using Ag nanostructures derived from the thermal decomposition of metal–organic decomposition (MOD) was proposed to achieve low-temperature bonding. Significant effects on bonding performance were determined by the thermal decomposition temperature, which in turn determined the organic content and sintering degree of Ag nanostructures. At a low thermal decomposition temperature of 160 °C, incomplete decomposition resulted in high organic content in the Ag nanostructures, causing large pores inside the Ag joints owing to the generation of gaseous products. Owing to the Ag particles with naked surfaces and wide size distribution, the Ag nanostructure obtained at 180 °C showed an excellent bonding performance, resulting in a high shear strength of 31.1 MPa at a low bonding temperature of 160 °C. As the thermal decomposition temperature was 200 °C, sintering among Ag particles increased the particle size, resulting in a reduction of surface energy and driving force for sintering. We think that uncovering this underlying mechanism responsible for the bonding performance will promote the application of Ag MOD in the die bonding of WBG power devices.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机物分解产生的银纳米结构的热分解温度相关键合性能
在宽带隙半导体功率器件封装中,芯片键合是指将芯片固定在基板上。因此,用于芯片粘接的银烧结工艺温度应较低,以防止损坏脆弱的芯片。在此,我们提出了一种不含有机物的策略,利用金属有机物热分解(MOD)产生的银纳米结构实现低温键合。热分解温度对接合性能有显著影响,而热分解温度又决定了有机物含量和银纳米结构的烧结度。在 160 ℃ 的低热分解温度下,由于分解不完全,纳米银结构中的有机物含量较高,产生的气态产物导致银接合点内部出现大气孔。由于银颗粒表面裸露且粒度分布较广,在 180 ℃ 下获得的银纳米结构显示出优异的粘合性能,在 160 ℃ 的低粘合温度下产生了 31.1 兆帕的高剪切强度。由于热分解温度为 200 ℃,Ag 颗粒之间的烧结增加了颗粒尺寸,导致表面能和烧结驱动力降低。我们认为,揭示导致粘结性能的这一潜在机制将促进 Ag MOD 在 WBG 功率器件芯片粘结中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
The influence of entanglement degree controlled by complex shear field on the performance of long-chain branched polypropylene Investigation on the microstructure and mechanical properties of 5356 aluminum alloy wire in continuous casting direct rolling process Crystallization behavior and thermal properties of octa-phenyl-substituted silsesquioxane-modified polylactide (PLA) Integrating dye-sensitized solar cells and supercapacitors: portable powerpacks for future energy applications High-security organic PVDF-coated SiO2 aerogel lithium battery separator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1