{"title":"Reducing the effect of noise on quantum gate design by linear filtering","authors":"Kumar Gautam","doi":"10.1007/s11128-024-04575-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we discuss how to reduce the interference that noise introduces into the scalar input signal of a quantum gate. Non-separable quantum gates can be made by making a small potential change to the Hamiltonian and then using perturbation theory to figure out the evolution operator. It is assumed that a scalar, temporally varying signal modulates the potential. To lessen the impact of noise on the design of the gate, we here take into account an extra noise component in the input signal and process it with a linear time-invariant filter. In order to meet these requirements, the Frobenius norm of the difference between the realized gate and the theoretical gate is minimized while taking into account the energy of the signal and the energy of the filter. Results from a computer simulation have been obtained by discretizing the resulting equations. The simulation results show that the proposed method effectively reduces the impact of noise on the gate design and improves its performance. This approach can be useful in designing gates for various applications, including signal processing and communication systems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04575-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discuss how to reduce the interference that noise introduces into the scalar input signal of a quantum gate. Non-separable quantum gates can be made by making a small potential change to the Hamiltonian and then using perturbation theory to figure out the evolution operator. It is assumed that a scalar, temporally varying signal modulates the potential. To lessen the impact of noise on the design of the gate, we here take into account an extra noise component in the input signal and process it with a linear time-invariant filter. In order to meet these requirements, the Frobenius norm of the difference between the realized gate and the theoretical gate is minimized while taking into account the energy of the signal and the energy of the filter. Results from a computer simulation have been obtained by discretizing the resulting equations. The simulation results show that the proposed method effectively reduces the impact of noise on the gate design and improves its performance. This approach can be useful in designing gates for various applications, including signal processing and communication systems.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.