{"title":"Invariant KAM Tori Around Annular Vortex Patches for 2D Euler Equations","authors":"Zineb Hassainia, Taoufik Hmidi, Emeric Roulley","doi":"10.1007/s00220-024-05141-0","DOIUrl":null,"url":null,"abstract":"<div><p>We construct time quasi-periodic vortex patch solutions with one hole for the planar Euler equations. These structures are captured close to any annulus provided that its modulus belongs to a massive Borel set. The proof is based on Nash–Moser scheme and KAM theory applied with a Hamiltonian system governing the radial deformations of the patch. Compared to the scalar case discussed recently in Hassainia et al. (KAM theory for active scalar equations, arXiv:2110.08615), Hassainia and Roulley (Boundary effects on the existence of quasi-periodic solutions for Euler equations, arXiv:2202.10053), Hmidi and Roulley (Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations, arXiv:2110.13751) and Roulley (Dyn Partial Differ Equ 20(4):311–366, 2023), some technical issues emerge due to the interaction between the interfaces. One of them is related to a new small divisor problem in the second order Melnikov non-resonances condition coming from the transport equations advected with different velocities.</p></div>","PeriodicalId":522,"journal":{"name":"Communications in Mathematical Physics","volume":"405 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00220-024-05141-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We construct time quasi-periodic vortex patch solutions with one hole for the planar Euler equations. These structures are captured close to any annulus provided that its modulus belongs to a massive Borel set. The proof is based on Nash–Moser scheme and KAM theory applied with a Hamiltonian system governing the radial deformations of the patch. Compared to the scalar case discussed recently in Hassainia et al. (KAM theory for active scalar equations, arXiv:2110.08615), Hassainia and Roulley (Boundary effects on the existence of quasi-periodic solutions for Euler equations, arXiv:2202.10053), Hmidi and Roulley (Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations, arXiv:2110.13751) and Roulley (Dyn Partial Differ Equ 20(4):311–366, 2023), some technical issues emerge due to the interaction between the interfaces. One of them is related to a new small divisor problem in the second order Melnikov non-resonances condition coming from the transport equations advected with different velocities.
期刊介绍:
The mission of Communications in Mathematical Physics is to offer a high forum for works which are motivated by the vision and the challenges of modern physics and which at the same time meet the highest mathematical standards.