Matrix Denoising: Bayes-Optimal Estimators Via Low-Degree Polynomials

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL Journal of Statistical Physics Pub Date : 2024-10-23 DOI:10.1007/s10955-024-03359-9
Guilhem Semerjian
{"title":"Matrix Denoising: Bayes-Optimal Estimators Via Low-Degree Polynomials","authors":"Guilhem Semerjian","doi":"10.1007/s10955-024-03359-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the additive version of the matrix denoising problem, where a random symmetric matrix <i>S</i> of size <i>n</i> has to be inferred from the observation of <span>\\(Y=S+Z\\)</span>, with <i>Z</i> an independent random matrix modeling a noise. For prior distributions of <i>S</i> and <i>Z</i> that are invariant under conjugation by orthogonal matrices we determine, using results from first and second order free probability theory, the Bayes-optimal (in terms of the mean square error) polynomial estimators of degree at most <i>D</i>, asymptotically in <i>n</i>, and show that as <i>D</i> increases they converge towards the estimator introduced by Bun et al. (IEEE Trans Inf Theory 62:7475, 2016). We conjecture that this optimality holds beyond strictly orthogonally invariant priors, and provide partial evidences of this universality phenomenon when <i>S</i> is an arbitrary Wishart matrix and <i>Z</i> is drawn from the Gaussian Orthogonal Ensemble, a case motivated by the related extensive rank matrix factorization problem.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03359-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03359-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the additive version of the matrix denoising problem, where a random symmetric matrix S of size n has to be inferred from the observation of \(Y=S+Z\), with Z an independent random matrix modeling a noise. For prior distributions of S and Z that are invariant under conjugation by orthogonal matrices we determine, using results from first and second order free probability theory, the Bayes-optimal (in terms of the mean square error) polynomial estimators of degree at most D, asymptotically in n, and show that as D increases they converge towards the estimator introduced by Bun et al. (IEEE Trans Inf Theory 62:7475, 2016). We conjecture that this optimality holds beyond strictly orthogonally invariant priors, and provide partial evidences of this universality phenomenon when S is an arbitrary Wishart matrix and Z is drawn from the Gaussian Orthogonal Ensemble, a case motivated by the related extensive rank matrix factorization problem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矩阵去噪:通过低度多项式的贝叶斯最优估计器
我们考虑的是矩阵去噪问题的加法版本,即必须从观测结果中推断出大小为 n 的随机对称矩阵 S(Y=S+Z),Z 是一个独立的随机矩阵,用于模拟噪声。对于在正交矩阵共轭下不变的 S 和 Z 的先验分布,我们利用一阶和二阶自由概率论的结果,确定了贝叶斯最优(就均方误差而言)多项式估计器,其阶数至多为 D,渐近于 n,并表明随着 D 的增大,它们向 Bun 等人引入的估计器收敛(IEEE Trans Inf Theory 62:7475, 2016)。我们猜想这种最优性在严格正交不变先验之外也是成立的,并提供了当 S 是任意 Wishart 矩阵且 Z 来自高斯正交集合时这种普遍性现象的部分证据,这种情况是由相关的广泛秩矩阵因式分解问题激发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
期刊最新文献
Quantum Boltzmann Dynamics and Bosonized Particle-Hole Interactions in Fermion Gases Moments of Characteristic Polynomials of Non-symmetric Random Matrices Inequalities related to uniformly convex functions with applications to joint entropy and p-logarithmic means Measure-Theoretic Time-Delay Embedding Complete Classification of Integrability and Non-Integrability of S=1/2 Spin Chains with Symmetric Next-Nearest-Neighbor Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1