{"title":"Modelling of Prednisolone Drug Encapsulation in Poly Lactic-co-Glycolic Acid Polymer Carrier Using Molecular Dynamics Simulations","authors":"Sriprasad Acharya, Surabhi Aswath, Srikanth Divi, Bharath Raja Guru, Poulumi Dey, Anoop Kishore Vatti","doi":"10.1007/s12247-024-09880-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Prednisolone, a synthetic corticosteroid drug, is extensively utilized to treat inflammatory diseases and regulates metabolism and the immune system in cancer treatment. However, these drugs are toxic and cause severe side effects if administrated for long durations and in large doses. This work intends to study the atomistic interactions of popular polymeric carrier like PLGA with the drug and thereby provide insights into achieving better loading and a sustained release.</p><h3>Methods</h3><p>Molecular dynamics (MD) simulations of prednisolone (drug) encapsulated in Poly Lactic-co-Glycolic acid (PLGA) are performed in this study. Grand Canonical Monte Carlo (GCMC) simulations with MD simulations are conducted to determine the water penetration in PLGA polymer and polymer stability in water. The investigations from this study encompasses structural and dynamical parameters, including the end-to-end distance, radius of gyration of polymer chains, interaction energy, and diffusion coefficient of the drug.</p><h3>Results</h3><p>The polymer-drug interactions are studied and identified from the simulation data of PLGA(75:25) and PLGA(50:50) polymers with prednisolone in an aqueous medium for optimal drug carrying capacity and effective drug release. Also, the polymeric systems of PLGA(75:25) and PLGA(50:50) are analyzed with the water penetrant loading using the Grand Canonical Monte Carlo (GCMC) and MD simulations. Water loading analysis revealed that PLGA(75:25) has the highest swelling compared to PLGA(50:50).</p><h3>Conclusion</h3><p>This study highlights the characteristics and critical parameters for developing an optimal drug delivery system by investigating polymer-drug interactions, drug encapsulation, and water uptake in polymers using MD and GCMC simulations.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09880-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Prednisolone, a synthetic corticosteroid drug, is extensively utilized to treat inflammatory diseases and regulates metabolism and the immune system in cancer treatment. However, these drugs are toxic and cause severe side effects if administrated for long durations and in large doses. This work intends to study the atomistic interactions of popular polymeric carrier like PLGA with the drug and thereby provide insights into achieving better loading and a sustained release.
Methods
Molecular dynamics (MD) simulations of prednisolone (drug) encapsulated in Poly Lactic-co-Glycolic acid (PLGA) are performed in this study. Grand Canonical Monte Carlo (GCMC) simulations with MD simulations are conducted to determine the water penetration in PLGA polymer and polymer stability in water. The investigations from this study encompasses structural and dynamical parameters, including the end-to-end distance, radius of gyration of polymer chains, interaction energy, and diffusion coefficient of the drug.
Results
The polymer-drug interactions are studied and identified from the simulation data of PLGA(75:25) and PLGA(50:50) polymers with prednisolone in an aqueous medium for optimal drug carrying capacity and effective drug release. Also, the polymeric systems of PLGA(75:25) and PLGA(50:50) are analyzed with the water penetrant loading using the Grand Canonical Monte Carlo (GCMC) and MD simulations. Water loading analysis revealed that PLGA(75:25) has the highest swelling compared to PLGA(50:50).
Conclusion
This study highlights the characteristics and critical parameters for developing an optimal drug delivery system by investigating polymer-drug interactions, drug encapsulation, and water uptake in polymers using MD and GCMC simulations.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.