Engineering Single Ni Sites on 3D Cage-like Cucurbit[n]uril Ligands for Efficient and Selective CO2 Photocatalytic Reduction

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-28 DOI:10.1002/anie.202417384
Yang Lan, Jingyi Wang, Xiyi Li, Chia-Hao Chang, Tianyu Zhang, Xuze Guan, Qiong Liu, Liquan Zhang, Ping Wen, Ivan Tang, Yuewen Zhang, Xiaofeng Yang, Junwang Tang
{"title":"Engineering Single Ni Sites on 3D Cage-like Cucurbit[n]uril Ligands for Efficient and Selective CO2 Photocatalytic Reduction","authors":"Yang Lan, Jingyi Wang, Xiyi Li, Chia-Hao Chang, Tianyu Zhang, Xuze Guan, Qiong Liu, Liquan Zhang, Ping Wen, Ivan Tang, Yuewen Zhang, Xiaofeng Yang, Junwang Tang","doi":"10.1002/anie.202417384","DOIUrl":null,"url":null,"abstract":"Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 µmol· h-1 with a high selectivity of 97.9% under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)32+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417384","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven CO2 selective reduction with high conversion is a challenging task yet holds immense promise for both CO2 neutralization and green fuel production. Enhancing CO2 adsorption at the catalytic centre can trigger a highly efficient CO2 capture-to-conversion process. Herein, we introduce cucurbit[n]urils (CB[n]), a new family of molecular ligands, as a key component in the creation of a 3D cage-like metal (nickel, Ni)-complex molecular co-catalyst (CB[7]-Ni) for photocatalysis. It exhibits an unprecedented CO yield rate of 72.1 µmol· h-1 with a high selectivity of 97.9% under visible light irradiation. To verify the origin of the carbon source in the products, a straightforward isotopic tracing method is designed based on tandem reactions. The catalytic process commences with photoelectron transfer from Ru(bpy)32+ to the Ni2+ site, resulting in the reduction of Ni2+ to Ni+. The locally enriched CO2 molecules in the cage ligand CB[7] undergo selective reduction by the Ni+ nearby to form CO product. This work exemplifies the inspiring potential of ligand structure engineering in advancing the development of efficient unanchored molecular co-catalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在三维笼状葫芦[n]脲配体上设计单个镍位点,实现高效和选择性二氧化碳光催化还原
太阳能驱动的高转化率二氧化碳选择性还原是一项具有挑战性的任务,但在二氧化碳中和与绿色燃料生产方面却大有可为。加强催化中心对二氧化碳的吸附可以引发高效的二氧化碳捕集转化过程。在此,我们介绍了葫芦[n]脲(CB[n])这一全新的分子配体家族,它是创建用于光催化的三维笼状金属(镍)-复合物分子共催化剂(CB[7]-Ni)的关键组成部分。在可见光照射下,它表现出前所未有的 72.1 µmol- h-1 的 CO 产率和 97.9% 的高选择性。为了验证产物中碳源的来源,设计了一种基于串联反应的直接同位素追踪方法。催化过程开始时,光电子从 Ru(bpy)32+ 转移到 Ni2+ 位点,导致 Ni2+ 还原成 Ni+。笼配体 CB[7] 中局部富集的 CO2 分子被附近的 Ni+ 选择性还原,形成 CO 产物。这项工作充分体现了配体结构工程在推动高效非锚定分子助催化剂发展方面令人鼓舞的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Early Detection of High-altitude Hypoxic Brain Injury by In Vivo Electrochemistry. Localized Water Restriction in Ternary Eutectic Electrolytes for Ultra-Low Temperature Hydrogen Batteries. Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery. Three-dimensional Covalent Organic Framework with Dense Lithiophilic Sites as Protective Layer to Enable High-Performance Lithium Metal Battery Near-Unity Photothermal CO2 Hydrogenation to Methanol based on a Molecule/Nanocarbon Hybrid Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1