Han-Jie Xiao , Hui-Han Zheng , Ming Lei , Jing-Hong Zhou , De Chen , Xing-Gui Zhou , Yi-An Zhu
{"title":"On the catalytic behaviors of Cu/SiO2 and Cu/γ-Al2O3 for dimethyl oxalate hydrogenation from microkinetic analysis including a plug flow reactor model","authors":"Han-Jie Xiao , Hui-Han Zheng , Ming Lei , Jing-Hong Zhou , De Chen , Xing-Gui Zhou , Yi-An Zhu","doi":"10.1016/j.jcat.2024.115822","DOIUrl":null,"url":null,"abstract":"<div><div>Cu-based catalysts have been widely used in dimethyl oxalate (DMO) hydrogenation due to their ability to activate C-O/C=O bonds without breaking C–C bonds. In this work, the electronic structures of Cu/SiO<sub>2</sub> and Cu/γ-Al<sub>2</sub>O<sub>3</sub> as well as their catalytic performance have been studied by the machine-learning-based stochastic surface walking-global neural network potential (SSW-NN) method, density functional theory calculation, and microkinetic analysis including a plug flow reactor (PFR) model. Among SiO<sub>2</sub>- and γ-Al<sub>2</sub>O<sub>3</sub>-supported Cu<sub>n</sub> (n = 1–9), the Cu<sub>5</sub> and Cu<sub>7</sub> clusters are held most tightly on SiO<sub>2</sub>(111) and γ-Al<sub>2</sub>O<sub>3</sub>(110), respectively. The electron transfer from Cu<sub>5</sub> to SiO<sub>2</sub>(111) leads to the formation of Cu<sup>δ+</sup> and Cu<sup>0</sup>, which are responsible for the stabilization of unsaturated C and O atoms in the intermediates, respectively, while on γ-Al<sub>2</sub>O<sub>3</sub>(110) an electron-rich Cu<sup>0</sup>-Al<sub>3c</sub> site is most active. Both the Cu<sup>δ+</sup>-Cu<sup>0</sup> and the Cu<sup>0</sup>-Al<sub>3c</sub> sites synergistically catalyze the dissociation of gas-phase species and hydrogenation of intermediates. Under the typical operating conditions, although the selectivity towards methyl glycolate (MG) is invariably highest at the reactor inlet, Cu<sub>5</sub>/SiO<sub>2</sub>(111) and Cu<sub>7</sub>/γ-Al<sub>2</sub>O<sub>3</sub>(110) are actually selective for the production of ethylene glycol (EG) and ethanol (EtOH), respectively, if the overall selectivity is taken into consideration, signifying the importance of including a reactor model to probe the kinetics of series of consecutive reactions. The dissociation of DMO is found to be the rate-determining step, and the high energy barrier for EG dissociation on Cu<sub>5</sub>/SiO<sub>2</sub>(111) hinders its deep hydrogenation while the relatively low barrier on Cu<sub>7</sub>/γ-Al<sub>2</sub>O<sub>3</sub>(110) is beneficial to the formation of EtOH.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115822"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724005359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cu-based catalysts have been widely used in dimethyl oxalate (DMO) hydrogenation due to their ability to activate C-O/C=O bonds without breaking C–C bonds. In this work, the electronic structures of Cu/SiO2 and Cu/γ-Al2O3 as well as their catalytic performance have been studied by the machine-learning-based stochastic surface walking-global neural network potential (SSW-NN) method, density functional theory calculation, and microkinetic analysis including a plug flow reactor (PFR) model. Among SiO2- and γ-Al2O3-supported Cun (n = 1–9), the Cu5 and Cu7 clusters are held most tightly on SiO2(111) and γ-Al2O3(110), respectively. The electron transfer from Cu5 to SiO2(111) leads to the formation of Cuδ+ and Cu0, which are responsible for the stabilization of unsaturated C and O atoms in the intermediates, respectively, while on γ-Al2O3(110) an electron-rich Cu0-Al3c site is most active. Both the Cuδ+-Cu0 and the Cu0-Al3c sites synergistically catalyze the dissociation of gas-phase species and hydrogenation of intermediates. Under the typical operating conditions, although the selectivity towards methyl glycolate (MG) is invariably highest at the reactor inlet, Cu5/SiO2(111) and Cu7/γ-Al2O3(110) are actually selective for the production of ethylene glycol (EG) and ethanol (EtOH), respectively, if the overall selectivity is taken into consideration, signifying the importance of including a reactor model to probe the kinetics of series of consecutive reactions. The dissociation of DMO is found to be the rate-determining step, and the high energy barrier for EG dissociation on Cu5/SiO2(111) hinders its deep hydrogenation while the relatively low barrier on Cu7/γ-Al2O3(110) is beneficial to the formation of EtOH.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.