Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-13 Epub Date: 2024-10-29 DOI:10.1021/acs.nanolett.4c03605
Jiajia Liu, Ziyan Zhou, Yifan Bo, Qiming Yan, Xin Su
{"title":"Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for <i>In Situ</i> Imaging of Metabolically Labeled Cell Membrane Glycoproteins.","authors":"Jiajia Liu, Ziyan Zhou, Yifan Bo, Qiming Yan, Xin Su","doi":"10.1021/acs.nanolett.4c03605","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for <i>in situ</i> imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03605","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence imaging of cell membrane glycoproteins based on metabolic labeling faces challenges including the sensitivity and spatial specificity and the use of a high concentration of unnatural sugars. To overcome these limitations, we developed a method for in situ imaging of cell membrane glycoproteins by operating Cas12a activity, and employing the ultrabright DNA nanostructure, FluoroCube (FC), as a signal reporter. Following Cas12a activation, we observed stable and intense fluorescence signals within 15 min. The combination of bright FC and Cas12a's amplification capability allows for effective imaging with only 5 μM of unnatural sugars and a brief 24-h incubation. Computational modeling demonstrates that Cas12a specifically cleaves FC in the 11-17 nm range of the glycosylation site, enabling spatially precise imaging. This approach successfully enabled fluorescence imaging of glycoproteins across various cell lines and the detection of changes in glycoprotein levels induced by drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 CRISPR/Cas12a 活性和基于 DNA 的超亮荧光立方体对代谢标记的细胞膜糖蛋白进行原位成像。
基于代谢标记的细胞膜糖蛋白荧光成像面临着灵敏度和空间特异性以及使用高浓度非天然糖等挑战。为了克服这些局限性,我们开发了一种通过操作 Cas12a 活性对细胞膜糖蛋白进行原位成像的方法,并采用超亮 DNA 纳米结构 FluoroCube(FC)作为信号报告器。Cas12a 激活后,我们在 15 分钟内观察到了稳定而强烈的荧光信号。明亮的 FC 与 Cas12a 的放大能力相结合,只需 5 μM 的非天然糖和短暂的 24 小时培养就能实现有效成像。计算模型表明,Cas12a 能在糖基化位点的 11-17 纳米范围内特异性地裂解 FC,从而实现空间精确成像。这种方法成功地实现了对各种细胞系的糖蛋白进行荧光成像,并能检测药物诱导的糖蛋白水平变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines. Electro-optically Modulated Nonlinear Metasurfaces. Fabrication of Novel Porous Nano-pesticides by Modifying MPN onto Cu-TCPP MOFs to Enhance Bactericidal Efficacy and Modulate Its Bioavailability. Harnessing CRISPR/Cas12a Activity and DNA-Based Ultrabright FluoroCube for In Situ Imaging of Metabolically Labeled Cell Membrane Glycoproteins. Mucin-Triggered Osmium Nanoclusters as Protein-Corona-Like Nanozymes with Photothermal-Enhanced Peroxidase-Like Activity for Tumor-Specific Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1