Nicholas W Kreofsky, Punarbasu Roy, Theresa M Reineke
{"title":"pH-Responsive Micelles Containing Quinine Functionalities Enhance Intracellular Gene Delivery and Expression.","authors":"Nicholas W Kreofsky, Punarbasu Roy, Theresa M Reineke","doi":"10.1021/acs.bioconjchem.4c00326","DOIUrl":null,"url":null,"abstract":"<p><p>Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":"1762-1778"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Quinine is a promising building block for creating polymer carriers for intracellular nucleic acid delivery. This is due to its ability to bind to genetic material through intercalation and electrostatic interactions and the balance of hydrophobicity and hydrophilicity dependent on the pH/charge state. Yet, studies utilizing cinchona alkaloid natural products in gene delivery are limited. Herein, we present the incorporation of a quinine functionalized monomer (Q) into block polymer architectures to form self-assembled micelles for highly efficient gene delivery. Q was incorporated into the core and/or the shell of the micelles to introduce the unique advantages of quinine to the system. We found that incorporation of Q into the core of the micelle resulted in acid-induced disassembly of the micelle and a boost in transfection efficiency by promoting endosomal escape. This effect was especially evident in the cancerous cell line, A549, which has a more acidic intracellular environment. Incorporation of Q into the shell of the micelles resulted in intercalative binding to the genetic payload as well as larger micelle-DNA complexes (micelleplexes) from the hydrophobicity of Q in the shell. These factors enable the micelleplexes to be more resistant to serum and have more persistent protein expression post-transfection. Overall, this study is the first to demonstrate the benefits of including quinine functionalities into self-assembled micelles for highly efficient gene delivery and presents a platform for inclusion of other natural products with similar properties into micellar systems.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.