Cobalt Nitride-Implanted PtCo Intermetallic Nanocatalysts for Ultrahigh Fuel Cell Cathode Performance.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-13 Epub Date: 2024-10-29 DOI:10.1021/jacs.4c09514
Muhammad Irfansyah Maulana, Tae Hwan Jo, Ha-Young Lee, Chaehyeon Lee, Caleb Gyan-Barimah, Cheol-Hwan Shin, Jeong-Hoon Yu, Kug-Seung Lee, Seoin Back, Jong-Sung Yu
{"title":"Cobalt Nitride-Implanted PtCo Intermetallic Nanocatalysts for Ultrahigh Fuel Cell Cathode Performance.","authors":"Muhammad Irfansyah Maulana, Tae Hwan Jo, Ha-Young Lee, Chaehyeon Lee, Caleb Gyan-Barimah, Cheol-Hwan Shin, Jeong-Hoon Yu, Kug-Seung Lee, Seoin Back, Jong-Sung Yu","doi":"10.1021/jacs.4c09514","DOIUrl":null,"url":null,"abstract":"<p><p>Stable and active oxygen reduction electrocatalysts are essential for practical fuel cells. Herein, we report a novel class of highly ordered platinum-cobalt (Pt-Co) alloys embedded with cobalt nitride. The intermetallic core-shell catalyst demonstrates an initial mass activity of 0.88 A mg<sub>Pt</sub><sup>-1</sup> at 0.9 V with 71% retention after 30,000 potential cycles of an aggressive square-wave accelerated durability test and loses only 9% of its electrochemical surface area, far exceeding the US Department of Energy 2025 targets, with unprecedented stability and only a minimal voltage loss under practical fuel cell operating conditions. We discover that regulating the atomic ordering in the core results in an optimal lattice configuration that accelerates the oxygen reduction kinetics. The presence of cobalt nitride decorated within PtCo superlattices guarantees a larger barrier to Co dissolution, leading to the excellent endurance of the electrocatalysts. This work brings up a transformative structural engineering strategy for rationally designing high-performing Pt-based catalysts with a unique atomic configuration for broad practical uses in energy conversion technology.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"30922-30932"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c09514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stable and active oxygen reduction electrocatalysts are essential for practical fuel cells. Herein, we report a novel class of highly ordered platinum-cobalt (Pt-Co) alloys embedded with cobalt nitride. The intermetallic core-shell catalyst demonstrates an initial mass activity of 0.88 A mgPt-1 at 0.9 V with 71% retention after 30,000 potential cycles of an aggressive square-wave accelerated durability test and loses only 9% of its electrochemical surface area, far exceeding the US Department of Energy 2025 targets, with unprecedented stability and only a minimal voltage loss under practical fuel cell operating conditions. We discover that regulating the atomic ordering in the core results in an optimal lattice configuration that accelerates the oxygen reduction kinetics. The presence of cobalt nitride decorated within PtCo superlattices guarantees a larger barrier to Co dissolution, leading to the excellent endurance of the electrocatalysts. This work brings up a transformative structural engineering strategy for rationally designing high-performing Pt-based catalysts with a unique atomic configuration for broad practical uses in energy conversion technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化钴植入铂钴金属间纳米催化剂实现超高燃料电池阴极性能。
稳定而活跃的氧还原电催化剂对实用燃料电池至关重要。在此,我们报告了一类嵌入氮化钴的新型高有序铂-钴(Pt-Co)合金。这种金属间核壳催化剂在 0.9 V 电压下的初始质量活性为 0.88 A mgPt-1,在激烈的方波加速耐久性测试中经过 30,000 个电位循环后仍能保持 71% 的活性,其电化学表面积损失仅为 9%,远远超过了美国能源部 2025 年的目标,而且在实际燃料电池工作条件下具有前所未有的稳定性,电压损失极小。我们发现,调节内核中的原子排序可产生最佳晶格配置,从而加速氧还原动力学。铂钴超晶格中氮化钴装饰的存在保证了更大的钴溶解屏障,从而使电催化剂具有出色的耐久性。这项研究为合理设计具有独特原子构型的高性能铂基催化剂提供了一种变革性的结构工程策略,可广泛应用于能源转换技术领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Geminal Synergy in Pt–Co Dual-Atom Catalysts: From Synthesis to Photocatalytic Hydrogen Production Performance Descriptor of Subsurface Metal-Promoted Boron Catalysts for Low-Temperature Propane Oxidative Dehydrogenation to Propylene Remote-Contact Catalysis for Target-Diameter Semiconducting Carbon Nanotube Arrays DNA-Regulated Multi-Protein Complement Control Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1