A Strongly Coupled 1T'-ReSe2@2H-MoSe2 van der Waals Heterostructure for Efficient Electrocatalytic Hydrogen Evolution at High Current Densities.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemistry - A European Journal Pub Date : 2025-01-17 Epub Date: 2024-11-19 DOI:10.1002/chem.202403433
Xingchen Zhang, Dongfang Zhang, Dingyi Zhou, Xinya Chen, Jinying Zhang, Zhiyong Wang
{"title":"A Strongly Coupled 1T'-ReSe<sub>2</sub>@2H-MoSe<sub>2</sub> van der Waals Heterostructure for Efficient Electrocatalytic Hydrogen Evolution at High Current Densities.","authors":"Xingchen Zhang, Dongfang Zhang, Dingyi Zhou, Xinya Chen, Jinying Zhang, Zhiyong Wang","doi":"10.1002/chem.202403433","DOIUrl":null,"url":null,"abstract":"<p><p>Developing efficient and durable non-noble metal electrocatalysts for high current-density hydrogen evolution reactions (HER) is a pressing requirement for commercial industrial electrolyzers. In this study, a vertical 1T'-ReSe<sub>2</sub>@2H-MoSe<sub>2</sub> van der Waals heterostructure was developed through interface engineering to enhance the advantages of each component and expose numerous active sites. Experimental investigations and density functional theory calculations demonstrate significant electronic coupling at the interface between 1T'-ReSe<sub>2</sub> and 2H-MoSe<sub>2</sub>, with suitable Gibbs free energy for hydrogen adsorption. The 1T'-ReSe<sub>2</sub>@2H-MoSe<sub>2</sub> heterostructure catalyst achieves high current density HER with low overpotentials of 191 mV to generate up to 800 mA/cm<sup>2</sup> in 0.5 M H<sub>2</sub>SO<sub>4</sub>, outperforming commercial 5 % Pt/C catalysts. Moreover, this catalyst exhibits rapid reaction kinetics and long-term durability, illustrating a successful approach to designing efficient heterostructure electrocatalysts for hydrogen production through interface engineering.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403433"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403433","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and durable non-noble metal electrocatalysts for high current-density hydrogen evolution reactions (HER) is a pressing requirement for commercial industrial electrolyzers. In this study, a vertical 1T'-ReSe2@2H-MoSe2 van der Waals heterostructure was developed through interface engineering to enhance the advantages of each component and expose numerous active sites. Experimental investigations and density functional theory calculations demonstrate significant electronic coupling at the interface between 1T'-ReSe2 and 2H-MoSe2, with suitable Gibbs free energy for hydrogen adsorption. The 1T'-ReSe2@2H-MoSe2 heterostructure catalyst achieves high current density HER with low overpotentials of 191 mV to generate up to 800 mA/cm2 in 0.5 M H2SO4, outperforming commercial 5 % Pt/C catalysts. Moreover, this catalyst exhibits rapid reaction kinetics and long-term durability, illustrating a successful approach to designing efficient heterostructure electrocatalysts for hydrogen production through interface engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强耦合 1T'-ReSe2@2H-MoSe2 范德瓦耳斯异质结构,用于在高电流密度下高效电催化氢气进化。
为高电流密度氢进化反应(HER)开发高效耐用的非贵金属电催化剂是商业化工业电解槽的迫切要求。本研究通过界面工程开发了垂直 1T'-ReSe2@2H-MoSe2 范德华异质结构,以增强各组分的优势,并暴露出大量活性位点。实验研究和密度泛函理论计算表明,1T'-ReSe2 和 2H-MoSe2 之间的界面存在显著的电子耦合,具有适合氢吸附的吉布斯自由能。1T'-ReSe2@2H-MoSe2 异质结构催化剂实现了高电流密度 HER,过电位低至 191 mV,可在 0.5 M H2SO4 中产生高达 800 mA/cm2 的电流,性能优于商用 5% Pt/C 催化剂。此外,这种催化剂还表现出快速的反应动力学和长期的耐久性,说明了一种通过界面工程设计高效异质结构制氢电催化剂的成功方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
期刊最新文献
Redox Cycling with Tellurium. Si-H Bond Activation by a Lewis Superacidic Tellurenyl Cation. Na Ions Doped Fe2VO4 Cathode for High Performance Aqueous Zinc-ion Batteries. Borenium Ion Equivalents Stabilized by BICAAC and Their Implementation as Catalysts in Hydrosilylation of Carbonyls. Hybrid Particle Size Template Method for Controllable Synthesis of Nitrogen-Doped Multilevel Porous Carbon as High-Rate Zn-Ion Hybrid Supercapacitor Cathode Materials. Potassium Phosphate-Mediated Synthesis of C4-Phosphorylated Quinolines via Cascade Cycloisomerization of Ynones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1