Electrochemiluminescence Reveals the Structure-Catalytic Activity Relationship of Heteroatom-Doped Carbon-Based Materials.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-29 DOI:10.1002/smtd.202401496
Peng Jin, Guoyuan Ren, Nan Gao, Chenglin Qing, Hui Zeng, Xinyue Wang, Meining Zhang
{"title":"Electrochemiluminescence Reveals the Structure-Catalytic Activity Relationship of Heteroatom-Doped Carbon-Based Materials.","authors":"Peng Jin, Guoyuan Ren, Nan Gao, Chenglin Qing, Hui Zeng, Xinyue Wang, Meining Zhang","doi":"10.1002/smtd.202401496","DOIUrl":null,"url":null,"abstract":"<p><p>Heteroatom doping can change the chemical environment of carbon-based nanomaterials and improve their catalytic performance. Exploring the structure-catalytic activity relationship of heteroatom-doped carbon-based materials is of great significance for studying catalytic mechanisms and designing highly efficient catalysts, but remains a significant challenge. Recently, reactive oxygen species (ROS)-triggered electrochemiluminescence (ECL) has shown great potential for unveiling the mechanism by which heteroatom-doped carbon-based materials catalyze the oxygen reduction reaction (ORR), owing to the high sensitivity of these materials to the properties of the electrode surface. Herein, two kinds of heteroatom-doped porous carbon (denoted as NP-C and N-C) are synthesized and analyzed by monitoring the cathodic ECL of luminol-H<sub>2</sub>O<sub>2</sub> in the low negative-potential region. P, N-doped NP-C exhibits better catalytic ability for activating H<sub>2</sub>O<sub>2</sub> to generate large amounts of •OH and O<sub>2</sub> <sup>•-</sup>, compared with N-C. A sensitive antioxidant-mediated ECL platform is successfully developed for detecting the antioxidant levels in cells, exhibiting considerable potential for evaluating the antioxidant capacity. The relationship between the structure and catalytic mechanism of heteroatom-doped carbon-based materials is successfully explored using ECL, where this method can be universally applied to carbon-based materials.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401496"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401496","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Heteroatom doping can change the chemical environment of carbon-based nanomaterials and improve their catalytic performance. Exploring the structure-catalytic activity relationship of heteroatom-doped carbon-based materials is of great significance for studying catalytic mechanisms and designing highly efficient catalysts, but remains a significant challenge. Recently, reactive oxygen species (ROS)-triggered electrochemiluminescence (ECL) has shown great potential for unveiling the mechanism by which heteroatom-doped carbon-based materials catalyze the oxygen reduction reaction (ORR), owing to the high sensitivity of these materials to the properties of the electrode surface. Herein, two kinds of heteroatom-doped porous carbon (denoted as NP-C and N-C) are synthesized and analyzed by monitoring the cathodic ECL of luminol-H2O2 in the low negative-potential region. P, N-doped NP-C exhibits better catalytic ability for activating H2O2 to generate large amounts of •OH and O2 •-, compared with N-C. A sensitive antioxidant-mediated ECL platform is successfully developed for detecting the antioxidant levels in cells, exhibiting considerable potential for evaluating the antioxidant capacity. The relationship between the structure and catalytic mechanism of heteroatom-doped carbon-based materials is successfully explored using ECL, where this method can be universally applied to carbon-based materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学发光揭示掺杂异原子的碳基材料的结构与催化活性关系
掺杂杂原子可以改变碳基纳米材料的化学环境,提高其催化性能。探索掺杂杂原子的碳基材料的结构与催化活性之间的关系,对于研究催化机理和设计高效催化剂具有重要意义,但仍是一项重大挑战。最近,活性氧(ROS)触发的电化学发光(ECL)在揭示掺杂杂原子的碳基材料催化氧还原反应(ORR)的机理方面显示出巨大的潜力,因为这些材料对电极表面的性质非常敏感。本文合成了两种掺杂杂原子的多孔碳(分别称为 NP-C 和 N-C),并通过监测低负电位区发光酚-H2O2 的阴极 ECL 进行了分析。与 N-C 相比,掺杂 P、N 的 NP-C 在活化 H2O2 生成大量 -OH 和 O2 方面表现出更好的催化能力。成功开发了一种灵敏的抗氧化剂介导的 ECL 平台,用于检测细胞中的抗氧化剂水平,在评估抗氧化能力方面具有相当大的潜力。利用 ECL 成功探索了掺杂杂原子的碳基材料的结构与催化机理之间的关系,该方法可普遍应用于碳基材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Oxygen Vacancy Engineering of TiNb2O7 Modified PE Separator Toward Dendrite-Free Lithium Metal Battery. Analysis of Metal-Organic Framework and Polyamide Interfaces in Membranes for Water Treatment and Antibacterial Applications. Dual-Passivation Strategy of Bulk and Surface Enables Highly Efficient and Stable Inverted Perovskite Solar Cells. Electrochemical Exfoliation of Large Antioxidative MXene Flakes for Polymeric Fire Safety. Platelet Activation-Induced In Situ Trapping Metastatic Tumor Cells Strategy for Post-Surgery Tumor Recurrence Immunochemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1