{"title":"[The role of oligodendrocyte precursor cells in immunoregulation].","authors":"Xiang Chen, Cheng He, Peng Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the generation of oligodendrocytes, which play a critical role in myelination of central nervous system. In addition, in demyelinating diseases, such as brain trauma, ischemia, and multiple sclerosis, OPCs are also found in demyelinated regions, but fail to differentiate into mature oligodendrocytes and remyelinate. From traditional view, OPC is victim of immune response. However, recent studies have shed light on immune associated OPCs (imOPCs), which are induced by interferon γ (IFN-γ), and interleukin 17 (IL-17), and are involved in the innate and adaptive immune activation. By expressing multiple natural immune pattern recognition receptors, such as Toll-like receptors, imOPCs can phagocytose myelin debris for antigen presentation. Furthermore, imOPCs can also secrete various inflammatory and chemotactic factors to regulate the differentiation of Th0 cells and the recruitment of NK cells, granulocytes and macrophages. Thus, it is of great importance to explore the immunoregulatory function of OPCs to elucidate the mechanisms and treatments of demyelinating diseases.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Oligodendrocyte precursor cells (OPCs) are recognized as the progenitors responsible for the generation of oligodendrocytes, which play a critical role in myelination of central nervous system. In addition, in demyelinating diseases, such as brain trauma, ischemia, and multiple sclerosis, OPCs are also found in demyelinated regions, but fail to differentiate into mature oligodendrocytes and remyelinate. From traditional view, OPC is victim of immune response. However, recent studies have shed light on immune associated OPCs (imOPCs), which are induced by interferon γ (IFN-γ), and interleukin 17 (IL-17), and are involved in the innate and adaptive immune activation. By expressing multiple natural immune pattern recognition receptors, such as Toll-like receptors, imOPCs can phagocytose myelin debris for antigen presentation. Furthermore, imOPCs can also secrete various inflammatory and chemotactic factors to regulate the differentiation of Th0 cells and the recruitment of NK cells, granulocytes and macrophages. Thus, it is of great importance to explore the immunoregulatory function of OPCs to elucidate the mechanisms and treatments of demyelinating diseases.
期刊介绍:
Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.