{"title":"Ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae accompanied hypermucoviscosity acquisition.","authors":"Yingyi Guo, Jiong Wang, Likang Yao, Yijing Wang, Yan Zhang, Chuyue Zhuo, Xu Yang, Feifeng Li, Jiahui Li, Baomo Liu, Nanhao He, Jiakang Chen, Shunian Xiao, Zhiwei Lin, Chao Zhuo","doi":"10.1186/s12866-024-03508-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antimicrobial resistance and bacterial hypermucoviscosity, associated with escalating production of capsules, constitute major challenges for the clinical management of Klebsiella pneumoniae (K. pneumoniae) infections. This study investigates the association and underlying mechanism between ceftazidime-avibactam (CAZ-AVI) resistance and bacterial hypermucoviscosity in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp).</p><p><strong>Results: </strong>The proportion of CAZ-AVI-sensitive clinical isolates exhibiting the hypermucoviscous phenotype was significantly lower than that of the resistant strains (5.6% vs. 46.7%, P < 0.001). To further verify the correlation and molecular mechanism between CAZ-AVI resistance and hypermucoviscosity, 10 CAZ-AVI-resistant isolates were generated through in vitro resistance selection from CAZ-AVI-sensitive KPC-Kp. The results showed the same association as it showed in the clinical isolates, with four out of ten induced CAZ-AVI-resistant isolates transitioning from negative to positive in the string tests. Comparative genomic analysis identified diverse mutations in the wzc gene, crucial for capsule polysaccharide (CPS) synthesis, in all four CAZ-AVI-resistant hypermucoviscous KPC-Kp strains compared to the parent strains. However, these mutations were absent in the other six KPC-Kp strains that did not exhibit induced hypermucoviscosity. Cloning of the wzc gene variants and their expression in wild-type strains confirmed that mutations in the wzc gene can induce bacterial hypermucoviscosity and heightened virulence, however, they do not confer resistance to CAZ-AVI.</p><p><strong>Conclusions: </strong>These results indicated that resistance to CAZ-AVI in KPC-Kp isolates may be accompanied by the acquisition of hypermucoviscosity, with mutations in the wzc gene often involving in this process.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"24 1","pages":"439"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-024-03508-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antimicrobial resistance and bacterial hypermucoviscosity, associated with escalating production of capsules, constitute major challenges for the clinical management of Klebsiella pneumoniae (K. pneumoniae) infections. This study investigates the association and underlying mechanism between ceftazidime-avibactam (CAZ-AVI) resistance and bacterial hypermucoviscosity in Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp).
Results: The proportion of CAZ-AVI-sensitive clinical isolates exhibiting the hypermucoviscous phenotype was significantly lower than that of the resistant strains (5.6% vs. 46.7%, P < 0.001). To further verify the correlation and molecular mechanism between CAZ-AVI resistance and hypermucoviscosity, 10 CAZ-AVI-resistant isolates were generated through in vitro resistance selection from CAZ-AVI-sensitive KPC-Kp. The results showed the same association as it showed in the clinical isolates, with four out of ten induced CAZ-AVI-resistant isolates transitioning from negative to positive in the string tests. Comparative genomic analysis identified diverse mutations in the wzc gene, crucial for capsule polysaccharide (CPS) synthesis, in all four CAZ-AVI-resistant hypermucoviscous KPC-Kp strains compared to the parent strains. However, these mutations were absent in the other six KPC-Kp strains that did not exhibit induced hypermucoviscosity. Cloning of the wzc gene variants and their expression in wild-type strains confirmed that mutations in the wzc gene can induce bacterial hypermucoviscosity and heightened virulence, however, they do not confer resistance to CAZ-AVI.
Conclusions: These results indicated that resistance to CAZ-AVI in KPC-Kp isolates may be accompanied by the acquisition of hypermucoviscosity, with mutations in the wzc gene often involving in this process.
期刊介绍:
BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.