Noëlle Warmenhoven, Gemma Salvadó, Shorena Janelidze, Niklas Mattsson-Carlgren, Divya Bali, Anna Orduña Dolado, Hartmuth Kolb, Gallen Triana-Baltzer, Nicolas R Barthélemy, Suzanne E Schindler, Andrew J Aschenbrenner, Cyrus A Raji, Tammie L S Benzinger, John C Morris, Laura Ibanez, Jigyasha Timsina, Carlos Cruchaga, Randall J Bateman, Nicholas Ashton, Burak Arslan, Henrik Zetterberg, Kaj Blennow, Alexa Pichet Binette, Oskar Hansson
{"title":"A comprehensive head-to-head comparison of key plasma phosphorylated tau 217 biomarker tests.","authors":"Noëlle Warmenhoven, Gemma Salvadó, Shorena Janelidze, Niklas Mattsson-Carlgren, Divya Bali, Anna Orduña Dolado, Hartmuth Kolb, Gallen Triana-Baltzer, Nicolas R Barthélemy, Suzanne E Schindler, Andrew J Aschenbrenner, Cyrus A Raji, Tammie L S Benzinger, John C Morris, Laura Ibanez, Jigyasha Timsina, Carlos Cruchaga, Randall J Bateman, Nicholas Ashton, Burak Arslan, Henrik Zetterberg, Kaj Blennow, Alexa Pichet Binette, Oskar Hansson","doi":"10.1093/brain/awae346","DOIUrl":null,"url":null,"abstract":"<p><p>Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests. Samples from 998 individuals (mean[range] age 68.5[20.0-92.5], 53% female) from the Swedish BioFINDER-2 cohort, including both cognitively unimpaired and cognitively impaired individuals, were analyzed. Plasma p-tau217 was measured with mass spectrometry (MS) assays (the ratio between phosphorylated and non-phosphorylated [%p-tau217WashU] and p-tau217WashU) as well as with immunoassays (p-tau217Lilly, p-tau217Janssen, p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, the FDA-approved p-tau181/Aβ42Elecsys, and p-tau181Elecsys. All plasma p-tau217 tests exhibited a high ability to detect abnormal Aβ-PET (AUC range: 0.91-0.96) and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (Pdiff<0.007). For detecting Aβ-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 91% (immunoassays: 84-87%), and a specificity of 94% (immunoassays: 85-89%). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aβ-PET status (Pdiff<0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (Pdiff=0.025). Plasma %p-tau217WashU exhibited stronger associations with all PET load outcomes compared to immunoassays; baseline Aβ-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff<0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff<0.001), longitudinal Aβ-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff<0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff<0.014). Among immunoassays, plasma p-tau217Lilly was more associated with Aβ-PET load than plasma p-tau217Janssen (Pdiff<0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all Pdiff<0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination[MMSE]) than all immunoassays (R2 %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; Pdiff<0.024). The main results were replicated in an external cohort from Washington University in St Louis (n =219). Finally, p-tau217NULISA showed similar performance to other immunoassays in subsets of both cohorts. In summary, both MS- and immunoassay-based p-tau217 tests generally perform well in identifying Aβ-PET, tau-PET, and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for AD pathology, while some immunoassays might be better suited as triage tests where positive results are confirmed with a second test, which needs to be determined by future reviews incorporating results from multiple cohorts.</p>","PeriodicalId":9063,"journal":{"name":"Brain","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awae346","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma phosphorylated-tau 217 (p-tau217) is currently the most promising biomarker for reliable detection of Alzheimer's disease (AD) pathology. Various p-tau217 assays have been developed, but their relative performance is unclear. We compared key plasma p-tau217 tests using cross-sectional and longitudinal measures of amyloid-β (Aβ)-PET, tau-PET, and cognition as outcomes, and benchmarked them against cerebrospinal fluid (CSF) biomarker tests. Samples from 998 individuals (mean[range] age 68.5[20.0-92.5], 53% female) from the Swedish BioFINDER-2 cohort, including both cognitively unimpaired and cognitively impaired individuals, were analyzed. Plasma p-tau217 was measured with mass spectrometry (MS) assays (the ratio between phosphorylated and non-phosphorylated [%p-tau217WashU] and p-tau217WashU) as well as with immunoassays (p-tau217Lilly, p-tau217Janssen, p-tau217ALZpath). CSF biomarkers included p-tau217Lilly, the FDA-approved p-tau181/Aβ42Elecsys, and p-tau181Elecsys. All plasma p-tau217 tests exhibited a high ability to detect abnormal Aβ-PET (AUC range: 0.91-0.96) and tau-PET (AUC range: 0.94-0.97). Plasma %p-tau217WashU had the highest performance, with significantly higher AUCs than all the immunoassays (Pdiff<0.007). For detecting Aβ-PET status, %p-tau217WashU had an accuracy of 0.93 (immunoassays: 0.83-0.88), sensitivity of 91% (immunoassays: 84-87%), and a specificity of 94% (immunoassays: 85-89%). Among immunoassays, p-tau217Lilly and plasma p-tau217ALZpath had higher AUCs than plasma p-tau217Janssen for Aβ-PET status (Pdiff<0.006), and p-tau217Lilly outperformed plasma p-tau217ALZpath for tau-PET status (Pdiff=0.025). Plasma %p-tau217WashU exhibited stronger associations with all PET load outcomes compared to immunoassays; baseline Aβ-PET load (R2: 0.72; immunoassays: 0.47-0.58; Pdiff<0.001), baseline tau-PET load (R2: 0.51; immunoassays: 0.38-0.45; Pdiff<0.001), longitudinal Aβ-PET load (R2: 0.53; immunoassays: 0.31-0.38; Pdiff<0.001) and longitudinal tau-PET load (R2: 0.50; immunoassays: 0.35-0.43; Pdiff<0.014). Among immunoassays, plasma p-tau217Lilly was more associated with Aβ-PET load than plasma p-tau217Janssen (Pdiff<0.020) and with tau-PET load than both plasma p-tau217Janssen and plasma p-tau217ALZpath (all Pdiff<0.010). Plasma %p-tau217 also correlated more strongly with baseline cognition (Mini-Mental State Examination[MMSE]) than all immunoassays (R2 %p-tau217WashU: 0.33; immunoassays: 0.27-0.30; Pdiff<0.024). The main results were replicated in an external cohort from Washington University in St Louis (n =219). Finally, p-tau217NULISA showed similar performance to other immunoassays in subsets of both cohorts. In summary, both MS- and immunoassay-based p-tau217 tests generally perform well in identifying Aβ-PET, tau-PET, and cognitive abnormalities, but %p-tau217WashU performed significantly better than all the examined immunoassays. Plasma %p-tau217 may be considered as a stand-alone confirmatory test for AD pathology, while some immunoassays might be better suited as triage tests where positive results are confirmed with a second test, which needs to be determined by future reviews incorporating results from multiple cohorts.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.