Cleoni Dos Santos Carvalho, Fabio Henrique da Silva, João Victor Cassiel Ferraz, Gabriel Hiroshi Fujiwara, Luciana Camargo de Oliveira, Heidi Samantha Moraes Utsunomiya, Iolanda Cristina Silveira Duarte, Letícia Portugal do Nascimento
{"title":"Use of biomarkers in bullfrog tadpoles Aquarana catesbeiana (Shaw 1802) for ecotoxicological evaluation of Pirajibú River (São Paulo, Brazil).","authors":"Cleoni Dos Santos Carvalho, Fabio Henrique da Silva, João Victor Cassiel Ferraz, Gabriel Hiroshi Fujiwara, Luciana Camargo de Oliveira, Heidi Samantha Moraes Utsunomiya, Iolanda Cristina Silveira Duarte, Letícia Portugal do Nascimento","doi":"10.1007/s10646-024-02821-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on investigating the water quality in the Pirajibú River, a relevant water body that flows through the industrial zone of Sorocaba (São Paulo/Brazil). Due to the limitations of assessing water quality based solely on standard physicochemical tests, an ecotoxicological approach was used to assess biomarker changes in the liver of bullfrog tadpoles (Aquarana catesbeiana). The animals were divided into groups and exposed to water samples collected upstream and downstream of the industrial zone. After 96 h, the upstream group presented a decrease in the enzymatic activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) and an increase in the activity of catalase (CAT). For the downstream group, while a decreased activity was observed for SOD, an increase in CAT and glutathione S-transferase (GST) activities was noted. A decrease in lipid peroxidation (LPO) levels was observed in the downstream group, and increased carbonyl protein (PCO) levels in the upstream and downstream groups. Integrated Biomarker Response (IBR) revealed GSH and PCO as the most responsive biomarkers, despite the lack of differences noted between the groups. Regardless of whether the water quality standards of Pirajibú River were following Brazilian environmental legislation, the tadpoles presented high sensitivity when exposed to the water, even for a short period.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02821-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on investigating the water quality in the Pirajibú River, a relevant water body that flows through the industrial zone of Sorocaba (São Paulo/Brazil). Due to the limitations of assessing water quality based solely on standard physicochemical tests, an ecotoxicological approach was used to assess biomarker changes in the liver of bullfrog tadpoles (Aquarana catesbeiana). The animals were divided into groups and exposed to water samples collected upstream and downstream of the industrial zone. After 96 h, the upstream group presented a decrease in the enzymatic activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD) and an increase in the activity of catalase (CAT). For the downstream group, while a decreased activity was observed for SOD, an increase in CAT and glutathione S-transferase (GST) activities was noted. A decrease in lipid peroxidation (LPO) levels was observed in the downstream group, and increased carbonyl protein (PCO) levels in the upstream and downstream groups. Integrated Biomarker Response (IBR) revealed GSH and PCO as the most responsive biomarkers, despite the lack of differences noted between the groups. Regardless of whether the water quality standards of Pirajibú River were following Brazilian environmental legislation, the tadpoles presented high sensitivity when exposed to the water, even for a short period.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.