Talia Tene, Stefano Bellucci, Joseth Pachacama, María F Cuenca-Lozano, Gabriela Tubon-Usca, Marco Guevara, Matteo La Pietra, Yolenny Cruz Salazar, Andrea Scarcello, Melvin Arias Polanco, Lala Rasim Gahramanli, Cristian Vacacela Gomez, Lorenzo S Caputi
{"title":"Synthesis of metal nanoparticles on graphene oxide and antibacterial properties.","authors":"Talia Tene, Stefano Bellucci, Joseth Pachacama, María F Cuenca-Lozano, Gabriela Tubon-Usca, Marco Guevara, Matteo La Pietra, Yolenny Cruz Salazar, Andrea Scarcello, Melvin Arias Polanco, Lala Rasim Gahramanli, Cristian Vacacela Gomez, Lorenzo S Caputi","doi":"10.3389/fchem.2024.1426179","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogen-induced infections and the rise of antibiotic-resistant bacteria, such as <i>Escherichia coli</i> (<i>E. coli</i>) and <i>Staphylococcus aureus</i> (<i>S. aureus</i>), pose significant global health challenges, emphasizing the need for new antimicrobial strategies. In this study, we synthesized graphene oxide (GO)-based composites functionalized with silver nanoparticles (AgNPs) and copper nanoparticles (CuNPs) as potential alternatives to traditional antibiotics. The objective is to assess the antibacterial properties of these composites and explore their efficacy against <i>E. coli</i> and <i>S. aureus</i>, two common bacterial pathogens. The composites are prepared using eco-friendly and conventional methods to ensure effective nanoparticle attachment to the GO surface. Structural and morphological characteristics are confirmed through SEM, AFM, EDS, XRD, UV-vis, FTIR, and Raman spectroscopy. The antibacterial efficacy of the composites is tested through disk diffusion assays, colony-forming unit (CFU) counts, and turbidimetry analysis, with an emphasis on understanding the effects of different nanoparticle concentrations. The results demonstrated a dose-dependent antibacterial effect, with GO/AgNP-1 showing superior antibacterial activity over GO/AgNP-2, particularly at lower concentrations (32.0 μg/mL and 62.5 μg/mL). The GO/CuNP composite also exhibited significant antibacterial properties, with optimal performance at 62.5 μg/mL for both bacterial strains. Turbidimetry analysis confirmed the inhibition of bacterial growth, especially at moderate concentrations, although slight nanoparticle aggregation at higher doses reduced efficacy. Lastly, both GO/AgNP and GO/CuNP composites demonstrated significant antibacterial potential. The results emphasize the need to fine-tune nanoparticle concentration and refine synthesis techniques to improve their efficacy, positioning these composites as strong contenders for antimicrobial use.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1426179","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pathogen-induced infections and the rise of antibiotic-resistant bacteria, such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), pose significant global health challenges, emphasizing the need for new antimicrobial strategies. In this study, we synthesized graphene oxide (GO)-based composites functionalized with silver nanoparticles (AgNPs) and copper nanoparticles (CuNPs) as potential alternatives to traditional antibiotics. The objective is to assess the antibacterial properties of these composites and explore their efficacy against E. coli and S. aureus, two common bacterial pathogens. The composites are prepared using eco-friendly and conventional methods to ensure effective nanoparticle attachment to the GO surface. Structural and morphological characteristics are confirmed through SEM, AFM, EDS, XRD, UV-vis, FTIR, and Raman spectroscopy. The antibacterial efficacy of the composites is tested through disk diffusion assays, colony-forming unit (CFU) counts, and turbidimetry analysis, with an emphasis on understanding the effects of different nanoparticle concentrations. The results demonstrated a dose-dependent antibacterial effect, with GO/AgNP-1 showing superior antibacterial activity over GO/AgNP-2, particularly at lower concentrations (32.0 μg/mL and 62.5 μg/mL). The GO/CuNP composite also exhibited significant antibacterial properties, with optimal performance at 62.5 μg/mL for both bacterial strains. Turbidimetry analysis confirmed the inhibition of bacterial growth, especially at moderate concentrations, although slight nanoparticle aggregation at higher doses reduced efficacy. Lastly, both GO/AgNP and GO/CuNP composites demonstrated significant antibacterial potential. The results emphasize the need to fine-tune nanoparticle concentration and refine synthesis techniques to improve their efficacy, positioning these composites as strong contenders for antimicrobial use.
期刊介绍:
Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide.
Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”.
All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.