Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemical Transactions Pub Date : 2024-10-29 DOI:10.1186/s12932-024-00093-9
Aaron R. Betts, Matthew H. H. Fischel, Anna Evers, Ryan Tappero, Donald L. Sparks
{"title":"Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation","authors":"Aaron R. Betts,&nbsp;Matthew H. H. Fischel,&nbsp;Anna Evers,&nbsp;Ryan Tappero,&nbsp;Donald L. Sparks","doi":"10.1186/s12932-024-00093-9","DOIUrl":null,"url":null,"abstract":"<div><p>Green rusts (GR) are mixed-valence iron (Fe) hydroxides which form in reducing redox environments like riparian and wetland soils and shallow groundwater. In these environments, silicon (Si) can influence Fe oxides’ chemical and physical properties but its role in GR formation and subsequent oxidative transformation have not been studied starting at initial nucleation. Green rust sulfate [GR(SO<sub>4</sub>)] and green rust carbonate [GR(CO<sub>3</sub>)] were both coprecipitated from salts by base titration in increasing % mol Si (0, 1, 10, and 50). The minerals were characterized before and after rapid (24 h) aqueous air-oxidation by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fe extended x-ray absorption fine structure spectroscopy (EXAFS), and N<sub>2</sub>-BET surface area. Results showed that only GR(SO4) or GR(CO3) was formed at every tested Si concentration. Increasing % mol Si caused decreased plate size and increased surface area in GR(CO3) but not GR(SO4). GR plate basal thickness was not changed at any condition indicating a lack of Si interlayering. Air oxidation of GR(SO4) at all % mol Si contents transformed by dissolution and reprecipitation into lepidocrocite and goethite, favoring ferrihydrite with higher % Si content. Air oxidation of GR(CO3) transformed into magnetite and goethite but increasing Si caused GR to oxidize while retaining its hexagonal plate structure via solid-state oxidation. Our results indicate that Si has the potential to cause GR to form in smaller particles and upon air oxidation, Si can either stabilize the plate structure or alter transformation to ferrihydrite.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"25 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geochemicaltransactions.biomedcentral.com/counter/pdf/10.1186/s12932-024-00093-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-024-00093-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Green rusts (GR) are mixed-valence iron (Fe) hydroxides which form in reducing redox environments like riparian and wetland soils and shallow groundwater. In these environments, silicon (Si) can influence Fe oxides’ chemical and physical properties but its role in GR formation and subsequent oxidative transformation have not been studied starting at initial nucleation. Green rust sulfate [GR(SO4)] and green rust carbonate [GR(CO3)] were both coprecipitated from salts by base titration in increasing % mol Si (0, 1, 10, and 50). The minerals were characterized before and after rapid (24 h) aqueous air-oxidation by x-ray diffraction (XRD), scanning electron microscopy (SEM), Fe extended x-ray absorption fine structure spectroscopy (EXAFS), and N2-BET surface area. Results showed that only GR(SO4) or GR(CO3) was formed at every tested Si concentration. Increasing % mol Si caused decreased plate size and increased surface area in GR(CO3) but not GR(SO4). GR plate basal thickness was not changed at any condition indicating a lack of Si interlayering. Air oxidation of GR(SO4) at all % mol Si contents transformed by dissolution and reprecipitation into lepidocrocite and goethite, favoring ferrihydrite with higher % Si content. Air oxidation of GR(CO3) transformed into magnetite and goethite but increasing Si caused GR to oxidize while retaining its hexagonal plate structure via solid-state oxidation. Our results indicate that Si has the potential to cause GR to form in smaller particles and upon air oxidation, Si can either stabilize the plate structure or alter transformation to ferrihydrite.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅酸盐共沉淀可减小绿锈晶体的尺寸,并限制空气氧化过程中的溶解沉淀。
绿锈(GR)是在河岸和湿地土壤以及浅层地下水等还原氧化还原环境中形成的混合价铁(Fe)氢氧化物。在这些环境中,硅(Si)会影响铁(Fe)氧化物的化学和物理特性,但从最初成核开始,硅(Si)在绿锈形成和随后的氧化转化过程中的作用尚未得到研究。绿锈硫酸盐[GR(SO4)]和绿锈碳酸盐[GR(CO3)]都是通过碱滴定法从盐中共沉淀出来的。通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、铁延伸 X 射线吸收精细结构光谱 (EXAFS) 和 N2-BET 表面积,对快速(24 小时)水基空气氧化前后的矿物进行了表征。结果表明,在每种测试的硅浓度下,只形成 GR(SO4) 或 GR(CO3)。增加硅的摩尔百分比会导致 GR(CO3) 的板尺寸减小、表面积增大,但不会导致 GR(SO4) 的板尺寸减小、表面积增大。在任何条件下,GR 板的基底厚度都没有发生变化,这表明缺少硅的夹层。在所有% mol Si 含量条件下,GR(SO4)经空气氧化后,通过溶解和再沉淀转变为鳞片闪长岩和网纹石,Si 含量较高的铁水云母更受青睐。GR(CO3)的空气氧化会转化为磁铁矿和鹅铁矿,但增加硅含量会导致 GR 氧化,同时通过固态氧化保留其六方板状结构。我们的研究结果表明,硅有可能使 GR 形成较小的颗粒,在空气氧化过程中,硅可以稳定板状结构或改变向铁水盐的转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
期刊最新文献
Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu transect, Central-Eastern Desert, Egypt: geochemical implementation of zircon U-Pb geochronology Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics Water quality assessment of Upper Ganga and Yamuna river systems during COVID-19 pandemic-induced lockdown: imprints of river rejuvenation Effect of Mn2+ concentration on the growth of δ-MnO2 crystals under acidic conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1