Decoupling actin assembly from microtubule disassembly by TBC1D3C-mediated direct GEF-H1 activation.

IF 2.9 2区 生物学 Q1 BIOLOGY Life Science Alliance Pub Date : 2024-10-28 Print Date: 2025-01-01 DOI:10.26508/lsa.202402585
Yi Luan, Zhifeng Deng, Yutong Zhu, Lisi Dai, Yang Yang, Zongping Xia
{"title":"Decoupling actin assembly from microtubule disassembly by TBC1D3C-mediated direct GEF-H1 activation.","authors":"Yi Luan, Zhifeng Deng, Yutong Zhu, Lisi Dai, Yang Yang, Zongping Xia","doi":"10.26508/lsa.202402585","DOIUrl":null,"url":null,"abstract":"<p><p>Actin and microtubules are essential cytoskeletal components and coordinate their dynamics through multiple coupling and decoupling mechanisms. However, how actin and microtubule dynamics are decoupled remains incompletely understood. Here, we identified TBC1D3C as a new regulator that can decouple actin filament assembly from microtubule disassembly. We showed that TBC1D3C induces the release of GEF-H1 from microtubules into the cytosol without perturbing microtubule arrays, leading to RhoA activation and actin filament assembly. Mechanistically, we found that TBC1D3C directly binds to GEF-H1, disrupting its interaction with the Tctex-DIC-14-3-3 complex and thereby displacing GEF-H1 from microtubules independently of microtubule disassembly. Super-resolution microscopy and live-cell imaging further confirmed that TBC1D3C triggers GEF-H1 release and actin filament assembly while maintaining microtubule integrity. Therefore, our findings demonstrated that TBC1D3C functions as a direct GEF activator and a novel regulator in decoupling actin assembly from microtubule disassembly, providing new insights into cytoskeletal regulation.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402585","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Actin and microtubules are essential cytoskeletal components and coordinate their dynamics through multiple coupling and decoupling mechanisms. However, how actin and microtubule dynamics are decoupled remains incompletely understood. Here, we identified TBC1D3C as a new regulator that can decouple actin filament assembly from microtubule disassembly. We showed that TBC1D3C induces the release of GEF-H1 from microtubules into the cytosol without perturbing microtubule arrays, leading to RhoA activation and actin filament assembly. Mechanistically, we found that TBC1D3C directly binds to GEF-H1, disrupting its interaction with the Tctex-DIC-14-3-3 complex and thereby displacing GEF-H1 from microtubules independently of microtubule disassembly. Super-resolution microscopy and live-cell imaging further confirmed that TBC1D3C triggers GEF-H1 release and actin filament assembly while maintaining microtubule integrity. Therefore, our findings demonstrated that TBC1D3C functions as a direct GEF activator and a novel regulator in decoupling actin assembly from microtubule disassembly, providing new insights into cytoskeletal regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 TBC1D3C 介导的直接 GEF-H1 激活,使肌动蛋白组装与微管解体脱钩。
肌动蛋白和微管是细胞骨架的重要组成部分,它们通过多种耦合和解耦机制协调自身的动力学。然而,人们对肌动蛋白和微管动力学如何去耦合仍不甚了解。在这里,我们发现 TBC1D3C 是一种能使肌动蛋白丝组装与微管解体脱钩的新调节因子。我们发现 TBC1D3C 能诱导 GEF-H1 从微管释放到细胞质中,而不会扰乱微管阵列,从而导致 RhoA 激活和肌动蛋白丝组装。从机理上讲,我们发现 TBC1D3C 可直接与 GEF-H1 结合,破坏其与 Tctex-DIC-14-3-3 复合物的相互作用,从而使 GEF-H1 脱离微管而独立于微管解体。超分辨显微镜和活细胞成像进一步证实,TBC1D3C 能在保持微管完整性的同时触发 GEF-H1 释放和肌动蛋白丝组装。因此,我们的研究结果表明,TBC1D3C 可作为一种直接的 GEF 激活剂和一种新型调节剂,在肌动蛋白组装与微管解体的解耦过程中发挥作用,为细胞骨架调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Life Science Alliance
Life Science Alliance Agricultural and Biological Sciences-Plant Science
CiteScore
5.80
自引率
2.30%
发文量
241
审稿时长
10 weeks
期刊介绍: Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.
期刊最新文献
RB dependent transcriptional regulation at mitotic centromeres preserves genome stability. Multi-omics analysis reveals metabolic diversity underlying endothelial cell functions. Cystatin C prevents tissue injury after lung transplantation. A role for the cholinergic neuron circadian clock in RNA metabolism and mediating neurodegeneration. Structure and dynamics of 2x(CENP-A/H4)2 octasome reveal a possible intermediate in centromeric chromatin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1