TLR-4: a promising target for chemotherapy-induced peripheral neuropathy.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biology Reports Pub Date : 2024-10-28 DOI:10.1007/s11033-024-10038-1
Nagendra Babu, Anagha Gadepalli, Akhilesh, Dilip Sharma, Anurag Kumar Singh, Deepak Chouhan, Somesh Agrawal, Vinod Tiwari
{"title":"TLR-4: a promising target for chemotherapy-induced peripheral neuropathy.","authors":"Nagendra Babu, Anagha Gadepalli, Akhilesh, Dilip Sharma, Anurag Kumar Singh, Deepak Chouhan, Somesh Agrawal, Vinod Tiwari","doi":"10.1007/s11033-024-10038-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1099"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10038-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TLR-4:化疗诱发周围神经病变的有望靶点。
化疗诱发的周围神经病变(CIPN)影响着绝大多数癌症患者,多达 80% 的患者在接受抗癌治疗时会出现这种严重且剂量有限的副作用。治疗实体瘤和血液肿瘤的多种常用药物均可诱发 CIPN。由于对与 CIPN 相关的药理干预及其后续信号通路的理解不足,导致一些药物在临床试验中的结果令人失望。最近的疼痛研究表明,人们越来越倾向于将神经炎症作为治疗慢性疼痛的一种策略。值得注意的是,收费样受体-4(TLR-4)已成为激活免疫系统的关键因素,并正在接受广泛的研究。在这篇综述中,我们强调了 TLR-4 在神经病理性疼痛中的潜在作用,突出了其作为 CIPN 治疗靶点的前景。此外,我们还探讨和分析了 TLR-4、各种免疫细胞、下游通路和受体之间在 CIPN 背景下错综复杂的相互作用。对这些相互作用的全面探索,为了解 TLR-4 在 CIPN 发展过程中的核心作用提供了宝贵的见解,为潜在的开创性治疗方法铺平了道路,以缓解这种使人衰弱的病症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
期刊最新文献
Exploring STK3 in melanoma: a systematic review of signaling networks and therapeutic opportunities. Expression analysis of defense signaling marker genes in Capsicum annuum in response to phytohormones elicitation. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Report of a novel missense TDP1 variant in a Pakistani family affected with an extremely rare disorder congenital spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Organoid models of breast cancer in precision medicine and translational research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1