Reina Suzuki, William J Riley, Matthew S Bushman, Yue Dong, Hiroshi Sekiguchi
{"title":"Tele-education in point-of-care ultrasound training.","authors":"Reina Suzuki, William J Riley, Matthew S Bushman, Yue Dong, Hiroshi Sekiguchi","doi":"10.1186/s13089-024-00394-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traditionally, ultrasound skills have been taught through a one-on-one approach, where instructors physically guide learners' hands at the bedside or in the workshop. However, this method is frequently challenged by scheduling and cost limitations. Our objective was to create a tele-education model for point-of-care ultrasound training and evaluate its effectiveness and its impact on learners' perceived workload compared to conventional education and self-directed learning methods.</p><p><strong>Methods: </strong>We conducted a 3-arm randomized trial, comparing tele-education (TE), conventional education (CE) and self-directed learning (SL) methods. All subjects underwent online didactic lectures prior to a hands-on ultrasound workshop. The TE group utilized an ultrasound machine equipped with a speakerphone, a webcam for direct visualization of learner's hand maneuvers, and an analog-to-video converter for the real-time streaming of ultrasound images. This configuration enabled remote instructors to provide immediate verbal feedback to learners. In contrast, the CE group received in-person coaching, while the SL group had no instructors present. Following the coaching session, subjects completed a scenario-based skill test and a survey on the National Aeronautics and Space Administration task load index (NASA-TLX) to measure their ultrasound competency and perceived workload, respectively.</p><p><strong>Results: </strong>Twenty-seven ultrasound novices were randomly allocated into 3 groups. The median skill test score of TE, CE, and SL was 22 [interquartile range (IQR): 18-28], 24 [IQR: 21-31], and 16 [IQR: 15-18], respectively (p < 0.01). Pairwise comparisons of median test scores of 3 groups demonstrated a statistical significance in comparisons of TE vs. SL (22 vs. 16, p = 0.01) and CE vs. SL (24 vs. 16, p < 0.01), but not in TE vs. CE (22 vs. 24, p = 0.56). There was no statistical significance observed in the median NASA-TLX scores among the 3 groups; 54 [IQR:47-61] in TE, 57 [IQR:22-64] in CE, and 66 [IQR: 66-72] in SL (p = 0.05).</p><p><strong>Conclusions: </strong>Our tele-education model was more effective than self-directed learning. There was no statistically significant difference in effectiveness between the tele-education and the conventional education groups. Importantly, tele-education did not impose a significantly higher workload on learners compared to conventional education or self-directed learning. Tele-education has a substantial potential as an alternative to conventional ultrasound training.</p>","PeriodicalId":36911,"journal":{"name":"Ultrasound Journal","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13089-024-00394-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Traditionally, ultrasound skills have been taught through a one-on-one approach, where instructors physically guide learners' hands at the bedside or in the workshop. However, this method is frequently challenged by scheduling and cost limitations. Our objective was to create a tele-education model for point-of-care ultrasound training and evaluate its effectiveness and its impact on learners' perceived workload compared to conventional education and self-directed learning methods.
Methods: We conducted a 3-arm randomized trial, comparing tele-education (TE), conventional education (CE) and self-directed learning (SL) methods. All subjects underwent online didactic lectures prior to a hands-on ultrasound workshop. The TE group utilized an ultrasound machine equipped with a speakerphone, a webcam for direct visualization of learner's hand maneuvers, and an analog-to-video converter for the real-time streaming of ultrasound images. This configuration enabled remote instructors to provide immediate verbal feedback to learners. In contrast, the CE group received in-person coaching, while the SL group had no instructors present. Following the coaching session, subjects completed a scenario-based skill test and a survey on the National Aeronautics and Space Administration task load index (NASA-TLX) to measure their ultrasound competency and perceived workload, respectively.
Results: Twenty-seven ultrasound novices were randomly allocated into 3 groups. The median skill test score of TE, CE, and SL was 22 [interquartile range (IQR): 18-28], 24 [IQR: 21-31], and 16 [IQR: 15-18], respectively (p < 0.01). Pairwise comparisons of median test scores of 3 groups demonstrated a statistical significance in comparisons of TE vs. SL (22 vs. 16, p = 0.01) and CE vs. SL (24 vs. 16, p < 0.01), but not in TE vs. CE (22 vs. 24, p = 0.56). There was no statistical significance observed in the median NASA-TLX scores among the 3 groups; 54 [IQR:47-61] in TE, 57 [IQR:22-64] in CE, and 66 [IQR: 66-72] in SL (p = 0.05).
Conclusions: Our tele-education model was more effective than self-directed learning. There was no statistically significant difference in effectiveness between the tele-education and the conventional education groups. Importantly, tele-education did not impose a significantly higher workload on learners compared to conventional education or self-directed learning. Tele-education has a substantial potential as an alternative to conventional ultrasound training.