Towards Hybrid Quantum-Classical Deep Learning Architecture for Indoor-Outdoor Detection Using QCNN-LSTM and Cluster State Signal Processing

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-14 DOI:10.1109/LSP.2024.3480043
Muhammad Bilal Akram Dastagir;Dongsoo Han
{"title":"Towards Hybrid Quantum-Classical Deep Learning Architecture for Indoor-Outdoor Detection Using QCNN-LSTM and Cluster State Signal Processing","authors":"Muhammad Bilal Akram Dastagir;Dongsoo Han","doi":"10.1109/LSP.2024.3480043","DOIUrl":null,"url":null,"abstract":"Quantum computing, combined with deep learning, leverages principles like superposition and entanglement to enhance complex data-driven tasks. The Noisy Intermediate-Scale Quantum (NISQ) era presents opportunities for hybrid quantum-classical architectures to address this challenge. Despite significant progress, practical applications of these hybrid models are limited. This letter proposes a novel hybrid quantum-classical deep learning architecture, integrating Quantum Convolutional Neural Networks (QCNNs) and Long-Short-Term Memory (LSTM) networks, enhanced by Cluster State Signal Processing. Furthermore, this letter addresses indoor-outdoor detection using high-dimensional signal data, utilizing the Cirq platform—a Python framework for developing and simulating Noisy Intermediate Scale Quantum (NISQ) circuits on quantum computers and simulators. The approach addresses noise and decoherence issues. Preliminary results show that the QCNN-LSTM model outperforms pure quantum and hybrid models in accuracy and efficiency. This validates the practical benefits of hybrid architectures, paving the way for advancements in complex data classification like indoor-outdoor detection.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716490/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing, combined with deep learning, leverages principles like superposition and entanglement to enhance complex data-driven tasks. The Noisy Intermediate-Scale Quantum (NISQ) era presents opportunities for hybrid quantum-classical architectures to address this challenge. Despite significant progress, practical applications of these hybrid models are limited. This letter proposes a novel hybrid quantum-classical deep learning architecture, integrating Quantum Convolutional Neural Networks (QCNNs) and Long-Short-Term Memory (LSTM) networks, enhanced by Cluster State Signal Processing. Furthermore, this letter addresses indoor-outdoor detection using high-dimensional signal data, utilizing the Cirq platform—a Python framework for developing and simulating Noisy Intermediate Scale Quantum (NISQ) circuits on quantum computers and simulators. The approach addresses noise and decoherence issues. Preliminary results show that the QCNN-LSTM model outperforms pure quantum and hybrid models in accuracy and efficiency. This validates the practical benefits of hybrid architectures, paving the way for advancements in complex data classification like indoor-outdoor detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 QCNN-LSTM 和群集态信号处理实现用于室内外检测的混合量子-经典深度学习架构
量子计算与深度学习相结合,可利用叠加和纠缠等原理来增强复杂的数据驱动任务。噪声中量子(NISQ)时代为混合量子-经典架构应对这一挑战提供了机遇。尽管取得了重大进展,但这些混合模型的实际应用仍然有限。这封信提出了一种新型混合量子-经典深度学习架构,它整合了量子卷积神经网络(QCNN)和长短期记忆(LSTM)网络,并通过簇态信号处理(Cluster State Signal Processing)进行了增强。此外,这封信还利用 Cirq 平台--在量子计算机和模拟器上开发和模拟噪声中间量级量子(NISQ)电路的 Python 框架--解决了利用高维信号数据进行室内-室外检测的问题。该方法解决了噪声和退相干问题。初步结果表明,QCNN-LSTM 模型在准确性和效率方面优于纯量子模型和混合模型。这验证了混合架构的实际优势,为室内外检测等复杂数据分类的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1