Philippe Gonzalez;Zheng-Hua Tan;Jan Østergaard;Jesper Jensen;Tommy Sonne Alstrøm;Tobias May
{"title":"Investigating the Design Space of Diffusion Models for Speech Enhancement","authors":"Philippe Gonzalez;Zheng-Hua Tan;Jan Østergaard;Jesper Jensen;Tommy Sonne Alstrøm;Tobias May","doi":"10.1109/TASLP.2024.3473319","DOIUrl":null,"url":null,"abstract":"Diffusion models are a new class of generative models that have shown outstanding performance in image generation literature. As a consequence, studies have attempted to apply diffusion models to other tasks, such as speech enhancement. A popular approach in adapting diffusion models to speech enhancement consists in modelling a progressive transformation between the clean and noisy speech signals. However, one popular diffusion model framework previously laid in image generation literature did not account for such a transformation towards the system input, which prevents from relating the existing diffusion-based speech enhancement systems with the aforementioned diffusion model framework. To address this, we extend this framework to account for the progressive transformation between the clean and noisy speech signals. This allows us to apply recent developments from image generation literature, and to systematically investigate design aspects of diffusion models that remain largely unexplored for speech enhancement, such as the neural network preconditioning, the training loss weighting, the stochastic differential equation (SDE), or the amount of stochasticity injected in the reverse process. We show that the performance of previous diffusion-based speech enhancement systems cannot be attributed to the progressive transformation between the clean and noisy speech signals. Moreover, we show that a proper choice of preconditioning, training loss weighting, SDE and sampler allows to outperform a popular diffusion-based speech enhancement system while using fewer sampling steps, thus reducing the computational cost by a factor of four.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4486-4500"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704960","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704960/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion models are a new class of generative models that have shown outstanding performance in image generation literature. As a consequence, studies have attempted to apply diffusion models to other tasks, such as speech enhancement. A popular approach in adapting diffusion models to speech enhancement consists in modelling a progressive transformation between the clean and noisy speech signals. However, one popular diffusion model framework previously laid in image generation literature did not account for such a transformation towards the system input, which prevents from relating the existing diffusion-based speech enhancement systems with the aforementioned diffusion model framework. To address this, we extend this framework to account for the progressive transformation between the clean and noisy speech signals. This allows us to apply recent developments from image generation literature, and to systematically investigate design aspects of diffusion models that remain largely unexplored for speech enhancement, such as the neural network preconditioning, the training loss weighting, the stochastic differential equation (SDE), or the amount of stochasticity injected in the reverse process. We show that the performance of previous diffusion-based speech enhancement systems cannot be attributed to the progressive transformation between the clean and noisy speech signals. Moreover, we show that a proper choice of preconditioning, training loss weighting, SDE and sampler allows to outperform a popular diffusion-based speech enhancement system while using fewer sampling steps, thus reducing the computational cost by a factor of four.
期刊介绍:
The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.