{"title":"Adversarial Embedding Steganography via Progressive Probability Optimizing and Discarded Stego Recycling","authors":"Fan Wang;Zhangjie Fu;Xiang Zhang;Junjie Lu","doi":"10.1109/LSP.2024.3478109","DOIUrl":null,"url":null,"abstract":"Adversarial embedding for image steganography is a novel technology to effectively enhance the steganographic security of the traditional steganographic algorithms. However, the existing schemes still have room for further improvement in the design of optimization strategy and the steganographic post-processing of optimization failure. In this paper, we design the progressive probability optimizing strategy (PPO). It dynamically selects more efficient gradients to guide the optimization of the probability optimization in a progressive manner. Moreover, we propose a discarded stego recycling mechanism (DSR) to re-select the stego from the discarded stego set that have failed to deceive the target steganalyzer after the optimzation fails. In such way, the statistical distribution of the stego can still further approximate the cover, thus further improving the steganographic security on re-trained steganalyzers in adversary-aware scenario. Comprehensive experiments show that compared with the existing advanced schemes, the proposed method boosts the security improvement against both the re-trained hand-crafted feature-based and deep leanring-based steganalysis models.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2920-2924"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713248/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Adversarial embedding for image steganography is a novel technology to effectively enhance the steganographic security of the traditional steganographic algorithms. However, the existing schemes still have room for further improvement in the design of optimization strategy and the steganographic post-processing of optimization failure. In this paper, we design the progressive probability optimizing strategy (PPO). It dynamically selects more efficient gradients to guide the optimization of the probability optimization in a progressive manner. Moreover, we propose a discarded stego recycling mechanism (DSR) to re-select the stego from the discarded stego set that have failed to deceive the target steganalyzer after the optimzation fails. In such way, the statistical distribution of the stego can still further approximate the cover, thus further improving the steganographic security on re-trained steganalyzers in adversary-aware scenario. Comprehensive experiments show that compared with the existing advanced schemes, the proposed method boosts the security improvement against both the re-trained hand-crafted feature-based and deep leanring-based steganalysis models.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.