Yonghong Liu;Fuzhong Weng;Fei Tang;Rui Li;Yongming Xu;Yang Han;Jun Yang;Qingyang Liu
{"title":"Simulations of Microwave Land Surface Emissivity Using FengYun-3D Microwave Radiation Imager Data: A Case in the Tibetan Plateau","authors":"Yonghong Liu;Fuzhong Weng;Fei Tang;Rui Li;Yongming Xu;Yang Han;Jun Yang;Qingyang Liu","doi":"10.1109/JSTARS.2024.3478350","DOIUrl":null,"url":null,"abstract":"Accurate information on microwave land surface emissivity (MLSE) is important for satellite data assimilation. In this article, a new random forest (RF) algorithm is developed for retrieving MLSE under all-sky conditions. Using Level-1 brightness temperature data from the FengYun-3D (FY-3D) microwave radiation imager in 2022, two global MLSE daily product datasets, clear-sky (FY-3D1) and clear/cloudy (FY-3D2), were obtained by using one-dimensional variational method and microwave radiative transfer method, respectively. Based on the global spatiotemporal consistency assessment, a high-quality daily MLSE training dataset for the Tibetan Plateau was selected from the two datasets. Then, ten land surface parameters from routine observation were chosen as input features to the RF model to simulate the MLSE under all-sky conditions in the Tibetan Plateau. The results show that both FY-3D1 and FY-3D2 MLSE datasets are comparable to the international mainstream MLSE products in quality, while the clear sky FY-3D1 is likely to be better than the clear/cloudy FY-3D2 MLSE. Land surface roughness, vegetation optical thickness, normalized vegetation index, and land cover type are identified as the most important factors affecting MLSE in the Tibetan Plateau. The RF model can effectively simulate the MLSE in the frequency range of 10.65–89.0 GHz under all-sky conditions. The coefficients of determination (\n<italic>R</i>\n<sup>2</sup>\n) for horizontal polarization and vertical polarization range from 0.86 (10.65 GHz) to 0.91 (18.7 GHz) and from 0.60 (10.65 GHz) to 0.74 (89.0 GHz), respectively. The root mean square errors for horizontal polarization and vertical polarization range from 0.017 (23.8 GHz) to 0.023 (10.65 GHz) and from 0.016 (10.65 GHz) to 0.019 (89.0 GHz), respectively. These results indicate that machine learning is likely to be an effective method for future all-sky simulation of MLSE.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19078-19094"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714024/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate information on microwave land surface emissivity (MLSE) is important for satellite data assimilation. In this article, a new random forest (RF) algorithm is developed for retrieving MLSE under all-sky conditions. Using Level-1 brightness temperature data from the FengYun-3D (FY-3D) microwave radiation imager in 2022, two global MLSE daily product datasets, clear-sky (FY-3D1) and clear/cloudy (FY-3D2), were obtained by using one-dimensional variational method and microwave radiative transfer method, respectively. Based on the global spatiotemporal consistency assessment, a high-quality daily MLSE training dataset for the Tibetan Plateau was selected from the two datasets. Then, ten land surface parameters from routine observation were chosen as input features to the RF model to simulate the MLSE under all-sky conditions in the Tibetan Plateau. The results show that both FY-3D1 and FY-3D2 MLSE datasets are comparable to the international mainstream MLSE products in quality, while the clear sky FY-3D1 is likely to be better than the clear/cloudy FY-3D2 MLSE. Land surface roughness, vegetation optical thickness, normalized vegetation index, and land cover type are identified as the most important factors affecting MLSE in the Tibetan Plateau. The RF model can effectively simulate the MLSE in the frequency range of 10.65–89.0 GHz under all-sky conditions. The coefficients of determination (
R
2
) for horizontal polarization and vertical polarization range from 0.86 (10.65 GHz) to 0.91 (18.7 GHz) and from 0.60 (10.65 GHz) to 0.74 (89.0 GHz), respectively. The root mean square errors for horizontal polarization and vertical polarization range from 0.017 (23.8 GHz) to 0.023 (10.65 GHz) and from 0.016 (10.65 GHz) to 0.019 (89.0 GHz), respectively. These results indicate that machine learning is likely to be an effective method for future all-sky simulation of MLSE.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.