Variational Signal Separation for Automotive Radar Interference Mitigation

Mate Toth;Erik Leitinger;Klaus Witrisal
{"title":"Variational Signal Separation for Automotive Radar Interference Mitigation","authors":"Mate Toth;Erik Leitinger;Klaus Witrisal","doi":"10.1109/TRS.2024.3477353","DOIUrl":null,"url":null,"abstract":"Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1007-1026"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711887","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10711887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于汽车雷达干扰缓解的变量信号分离技术
相互干扰缓解和目标参数估计算法是频率调制连续波(FMCW)雷达汽车应用的关键因素。本文介绍了一种信号分离方法,用于检测和估计雷达目标参数,同时联合估计和连续消除干扰信号。由于必须同时考虑相干雷达回波和受各个多径传播信道影响的非相干干扰,因此基本信号模型是一个挑战。在某些假设条件下,该模型被描述为由参数干扰啁啾包络加权的多径信道的叠加。受稀疏贝叶斯学习(SBL)的启发,我们采用了一种增强概率模型,对每个多径信道使用分层伽马-高斯先验模型。在此基础上,利用变异期望最大化(EM)方法推导出一种迭代推理算法。从对象参数估计精度和鲁棒性方面对该算法进行了统计评估,结果表明,该算法在对象估计精度方面基本能够达到克拉默-拉奥下限(CRLB),并且与无干扰情况下的雷达性能非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1