A sequential flow process of CO2 capture and conversion using cost-effective porous organic polymers†

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Green Chemistry Pub Date : 2024-09-18 DOI:10.1039/d4gc03494e
Zhongqi Wu , Zhong Li , Lei Hu , Samson Afewerki , Maria Strømme , Qian-Feng Zhang , Chao Xu
{"title":"A sequential flow process of CO2 capture and conversion using cost-effective porous organic polymers†","authors":"Zhongqi Wu ,&nbsp;Zhong Li ,&nbsp;Lei Hu ,&nbsp;Samson Afewerki ,&nbsp;Maria Strømme ,&nbsp;Qian-Feng Zhang ,&nbsp;Chao Xu","doi":"10.1039/d4gc03494e","DOIUrl":null,"url":null,"abstract":"<div><div>Porous organic polymers (POPs) have shown significant potential for CO<sub>2</sub> capture and utilization due to their high surface areas, tunable porosity, high stability, and ease of modification. Developing POPs for CO<sub>2</sub> capture and catalytic conversion offers a viable solution to rising CO<sub>2</sub> emissions. This study presents POPs composed of pyridine units, serving as dual functional materials that act as sorbents for CO<sub>2</sub> capture and as substrates supporting silver chalcogenolate clusters (SCCs) for catalytic CO<sub>2</sub> conversion. The scalable and cost-effective synthesis of these POPs enabled the design of pilot-scale breakthrough apparatus with two parallel POP sorbent beds for continuous CO<sub>2</sub> capture from simulated flue gas, achieving a high working capacity of 20 L<sub>flue gas</sub> kg<sub>POP</sub><sup>−1</sup> h<sup>−1</sup> for flue gas separation. Given the practical feasibility of using POPs for CO<sub>2</sub> capture and the high catalytic activity of POPs loaded with SCCs in CO<sub>2</sub> cycloaddition, a sequential process that integrates capturing CO<sub>2</sub> from simulated flue gas and directly converting the captured CO<sub>2</sub> into oxazolidinone achieves a high space–time yield of up to 9.6 g L<sub>POP</sub><sup>−1</sup> day<sup>−1</sup> in continuous operation. This study provides a viable strategy for CO<sub>2</sub> capture and utilization using cost-effective, dual-functional porous materials.</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 21","pages":"Pages 10960-10968"},"PeriodicalIF":9.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/gc/d4gc03494e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224008215","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous organic polymers (POPs) have shown significant potential for CO2 capture and utilization due to their high surface areas, tunable porosity, high stability, and ease of modification. Developing POPs for CO2 capture and catalytic conversion offers a viable solution to rising CO2 emissions. This study presents POPs composed of pyridine units, serving as dual functional materials that act as sorbents for CO2 capture and as substrates supporting silver chalcogenolate clusters (SCCs) for catalytic CO2 conversion. The scalable and cost-effective synthesis of these POPs enabled the design of pilot-scale breakthrough apparatus with two parallel POP sorbent beds for continuous CO2 capture from simulated flue gas, achieving a high working capacity of 20 Lflue gas kgPOP−1 h−1 for flue gas separation. Given the practical feasibility of using POPs for CO2 capture and the high catalytic activity of POPs loaded with SCCs in CO2 cycloaddition, a sequential process that integrates capturing CO2 from simulated flue gas and directly converting the captured CO2 into oxazolidinone achieves a high space–time yield of up to 9.6 g LPOP−1 day−1 in continuous operation. This study provides a viable strategy for CO2 capture and utilization using cost-effective, dual-functional porous materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用具有成本效益的多孔有机聚合物† 实现二氧化碳捕获和转化的连续流工艺
多孔有机聚合物(POPs)具有表面积大、孔隙率可调、稳定性高和易于改性等特点,因此在二氧化碳捕获和利用方面具有巨大潜力。开发用于二氧化碳捕获和催化转化的持久性有机聚合物为解决二氧化碳排放量不断增加的问题提供了可行的方案。本研究介绍了由吡啶单元组成的持久性有机污染物,这种物质具有双重功能,既可作为二氧化碳捕集的吸附剂,也可作为支持银盐瑀簇(SCC)的基质,用于催化二氧化碳转化。由于这些持久性有机污染物的合成具有可扩展性和成本效益,因此能够设计出具有两个平行持久性有机污染物吸附剂床的中试规模突破性装置,用于从模拟烟气中连续捕获二氧化碳,实现了 20 L 烟气 kgPOP-1 h-1 的烟气分离高工作能力。考虑到利用持久性有机污染物捕集二氧化碳的实际可行性,以及负载 SCC 的持久性有机污染物在二氧化碳环加成反应中的高催化活性,一种将捕集模拟烟气中的二氧化碳和将捕集的二氧化碳直接转化为噁唑烷酮的连续过程在连续运行中实现了高达 9.6 克 LPOP-1 天-1 的高时空产量。这项研究为利用具有成本效益的双功能多孔材料捕集和利用二氧化碳提供了一种可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
期刊最新文献
Correction: Cesium chemistry enables microporous carbon nanofibers with biomimetic ion transport channels for zinc-ion capacitors Introduction to “Make polymers sustainable, why and how?” Mechanically robust thermosets featuring room-temperature repairability and chemical upcyclability Visible light-driven heterogeneous semiconductor CdS photocatalyzed defluorinative acylation reaction for the synthesis of γ,γ-difluoroallylic ketones Conventional vs. direct vs. electrochemical lithium extraction: a holistic TEA–LCA of lithium carbonate production from spodumene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1