Identification of candidate proteins related to oleic acid accumulation during sunflower (Helianthus annuus L.) seed development through comparative proteome analysis
Fei Zhou, Yan Liu, Pengyuan Xie, Jun Ma, Jing Wang, Jing Sun, Xutang Huang, Wenjun Wang
{"title":"Identification of candidate proteins related to oleic acid accumulation during sunflower (Helianthus annuus L.) seed development through comparative proteome analysis","authors":"Fei Zhou, Yan Liu, Pengyuan Xie, Jun Ma, Jing Wang, Jing Sun, Xutang Huang, Wenjun Wang","doi":"10.1007/s11738-024-03736-7","DOIUrl":null,"url":null,"abstract":"<div><p>As a crucial oil crop, sunflower (<i>Helianthus annuus</i> L.) has a high content of unsaturated fatty acids (FAs). The unsaturated FAs found in sunflower oil mainly include oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). OA’s antioxidant activity makes sunflower oil with high health value and suitable for storage. However, molecular mechanisms underlying differences in OA accumulation between high- and low-oleate sunflower varieties in seed development remain unexplored. Here, to identify key OA synthesis-related proteins, isobaric tag for relative and absolute quantitation (iTRAQ) was performed. Ultimately, 592 differentially expressed proteins (DEPs) (233 upregulated, 359 downregulated) were identified between high-oleate (‘L-1-OL-1’) and low-oleate (‘86–1’) maintainer lines. KEGG enrichment analysis of DEPs identified biosynthesis of unsaturated FAs as the most highly enriched biological pathway. Subsequently, combined transcriptome and proteome analysis results suggested that several proteins in this pathway might influence final seed OA content, including FAD2 (Δ12 fatty acid desaturase). Notably, FAD2 expression was significantly downregulated in ‘L-1-OL-1’ versus ‘86–1’ seeds, with results aligning with <i>FAD2</i> mRNA expression results determined via qRT-PCR analysis. These findings and understanding of OA synthesis mechanisms could help improve oil quality through breeding and germplasm-based efforts in sunflower.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 11","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03736-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a crucial oil crop, sunflower (Helianthus annuus L.) has a high content of unsaturated fatty acids (FAs). The unsaturated FAs found in sunflower oil mainly include oleic acid (OA, C18:1) and linoleic acid (LOA, C18:2). OA’s antioxidant activity makes sunflower oil with high health value and suitable for storage. However, molecular mechanisms underlying differences in OA accumulation between high- and low-oleate sunflower varieties in seed development remain unexplored. Here, to identify key OA synthesis-related proteins, isobaric tag for relative and absolute quantitation (iTRAQ) was performed. Ultimately, 592 differentially expressed proteins (DEPs) (233 upregulated, 359 downregulated) were identified between high-oleate (‘L-1-OL-1’) and low-oleate (‘86–1’) maintainer lines. KEGG enrichment analysis of DEPs identified biosynthesis of unsaturated FAs as the most highly enriched biological pathway. Subsequently, combined transcriptome and proteome analysis results suggested that several proteins in this pathway might influence final seed OA content, including FAD2 (Δ12 fatty acid desaturase). Notably, FAD2 expression was significantly downregulated in ‘L-1-OL-1’ versus ‘86–1’ seeds, with results aligning with FAD2 mRNA expression results determined via qRT-PCR analysis. These findings and understanding of OA synthesis mechanisms could help improve oil quality through breeding and germplasm-based efforts in sunflower.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.