Determination of the Dipole Moment Variation Upon Excitation in the Chromophore of Green Fluorescent Protein From Molecular Dynamic Trajectories with QM/MM Potentials Using Machine Learning Methods

IF 0.7 4区 化学 Q4 CHEMISTRY, PHYSICAL Russian Journal of Physical Chemistry A Pub Date : 2024-10-28 DOI:10.1134/S0036024424701796
T. M. Zakharova, A. M. Kulakova, M. A. Krinitsky, M. I. Varentsov, M. G. Khrenova
{"title":"Determination of the Dipole Moment Variation Upon Excitation in the Chromophore of Green Fluorescent Protein From Molecular Dynamic Trajectories with QM/MM Potentials Using Machine Learning Methods","authors":"T. M. Zakharova,&nbsp;A. M. Kulakova,&nbsp;M. A. Krinitsky,&nbsp;M. I. Varentsov,&nbsp;M. G. Khrenova","doi":"10.1134/S0036024424701796","DOIUrl":null,"url":null,"abstract":"<p>Quantum and molecular mechanics (QM/MM) potentials are used to calculate molecular dynamics trajectories for the EYFP protein of the green fluorescent protein family. Machine learning models are constructed to establish the relationship between the geometric parameters of the chromophore in the frame of its trajectory and the properties of its electronic excitation. It is shown that it is not enough to use only bridging bonds between the phenyl and imidazolidone fragments of the chromophore as a geometric parameter, and at least two more neighboring bonds must be added to the model. The proposed models allow determination of the dipole moment variation upon excitation with an average error of 0.11 a.u.</p>","PeriodicalId":767,"journal":{"name":"Russian Journal of Physical Chemistry A","volume":"98 11","pages":"2602 - 2607"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0036024424701796.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry A","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0036024424701796","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum and molecular mechanics (QM/MM) potentials are used to calculate molecular dynamics trajectories for the EYFP protein of the green fluorescent protein family. Machine learning models are constructed to establish the relationship between the geometric parameters of the chromophore in the frame of its trajectory and the properties of its electronic excitation. It is shown that it is not enough to use only bridging bonds between the phenyl and imidazolidone fragments of the chromophore as a geometric parameter, and at least two more neighboring bonds must be added to the model. The proposed models allow determination of the dipole moment variation upon excitation with an average error of 0.11 a.u.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习方法从 QM/MM 电位分子动力学轨迹确定绿色荧光蛋白发色团激发时的偶极矩变化
量子力学和分子力学(QM/MM)势用于计算绿色荧光蛋白家族中 EYFP 蛋白的分子动力学轨迹。建立了机器学习模型,以确定发色团在其轨迹框架内的几何参数与其电子激发特性之间的关系。研究表明,仅使用发色团的苯基和咪唑烷酮片段之间的桥键作为几何参数是不够的,还必须在模型中增加至少两个邻接键。所提出的模型可以确定激发时偶极矩的变化,平均误差为 0.11 a.u。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
376
审稿时长
5.1 months
期刊介绍: Russian Journal of Physical Chemistry A. Focus on Chemistry (Zhurnal Fizicheskoi Khimii), founded in 1930, offers a comprehensive review of theoretical and experimental research from the Russian Academy of Sciences, leading research and academic centers from Russia and from all over the world. Articles are devoted to chemical thermodynamics and thermochemistry, biophysical chemistry, photochemistry and magnetochemistry, materials structure, quantum chemistry, physical chemistry of nanomaterials and solutions, surface phenomena and adsorption, and methods and techniques of physicochemical studies.
期刊最新文献
Molecular Similarity Used for Evaluating the Accuracy of Retention Index Predictions in Gas Chromatography Using Deep Learning Optimization of β-Ga2O3 Device Performance through Rare Earth Doping: Analysis of Stability, Electronic Structure, and Optical Properties Inhibitory Protection of Low-Carbon Steel in a Flow of Sulfuric Acid Solution Containing Iron(III) Sulfate Thermochemistry of Dissolution of Cobalt Tetra-4-carboxymetallophthalocyanine in Aqueous Solutions of Potassium Hydroxide at 298.15 K Applicability of Embedded Atom Model (EAM) Potentials to Liquid Silicon and Germanium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1