{"title":"Environmental capacity simulation and source analysis of toxic metals in soils of Wucaiwan mining area, Xinjiang, China","authors":"Dejun Yang, Minyue Wang, Xiang Gao, Huawei Zhu, Yu Zhang","doi":"10.1007/s12665-024-11926-2","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of toxic metal pollution in the soil of mining areas accompanied by coal mining cannot be ignored. Taking the mining area of Wucaiwan in Xinjiang as the research subject, the content characteristics of soil toxic metals were sampled and analyzed. We calculated the rotation factor loading coefficients and further performed principal component analysis to resolve the sources of toxic toxic metals. We analyze the individual environmental capacity index and integrated environmental capacity index to reflect the environmental capacity level. The temporal change trend of soil environmental capacity was studied, and the correlation between environmental capacity, pH and organic carbon was explored. The results showed that (1) the average value of Cd content in the soil of the study area exceeded the background value, and the size of the total environmental capacity was ranked as Cr > Ni > Pb > Cu > Cd; (2) the size of the average individual environmental capacity index was ranked as Cu (1.15) > Cr (1.10) > Ni (1.04) > Pb (1.03) > Cd (0.96), and the comprehensive environmental capacity index was 1.06 (3) the cumulative contribution of the first three main components of soil toxic metals reached 91.55%, and the presumed sources were soil parent material, coal combustion and dustfall, respectively; (4) the correlation between the existing capacities of different toxic metals was strong, and the existing capacity of Pb was highly significantly and positively correlated with the organic carbon content.</p></div>","PeriodicalId":542,"journal":{"name":"Environmental Earth Sciences","volume":"83 21","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Earth Sciences","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s12665-024-11926-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of toxic metal pollution in the soil of mining areas accompanied by coal mining cannot be ignored. Taking the mining area of Wucaiwan in Xinjiang as the research subject, the content characteristics of soil toxic metals were sampled and analyzed. We calculated the rotation factor loading coefficients and further performed principal component analysis to resolve the sources of toxic toxic metals. We analyze the individual environmental capacity index and integrated environmental capacity index to reflect the environmental capacity level. The temporal change trend of soil environmental capacity was studied, and the correlation between environmental capacity, pH and organic carbon was explored. The results showed that (1) the average value of Cd content in the soil of the study area exceeded the background value, and the size of the total environmental capacity was ranked as Cr > Ni > Pb > Cu > Cd; (2) the size of the average individual environmental capacity index was ranked as Cu (1.15) > Cr (1.10) > Ni (1.04) > Pb (1.03) > Cd (0.96), and the comprehensive environmental capacity index was 1.06 (3) the cumulative contribution of the first three main components of soil toxic metals reached 91.55%, and the presumed sources were soil parent material, coal combustion and dustfall, respectively; (4) the correlation between the existing capacities of different toxic metals was strong, and the existing capacity of Pb was highly significantly and positively correlated with the organic carbon content.
期刊介绍:
Environmental Earth Sciences is an international multidisciplinary journal concerned with all aspects of interaction between humans, natural resources, ecosystems, special climates or unique geographic zones, and the earth:
Water and soil contamination caused by waste management and disposal practices
Environmental problems associated with transportation by land, air, or water
Geological processes that may impact biosystems or humans
Man-made or naturally occurring geological or hydrological hazards
Environmental problems associated with the recovery of materials from the earth
Environmental problems caused by extraction of minerals, coal, and ores, as well as oil and gas, water and alternative energy sources
Environmental impacts of exploration and recultivation – Environmental impacts of hazardous materials
Management of environmental data and information in data banks and information systems
Dissemination of knowledge on techniques, methods, approaches and experiences to improve and remediate the environment
In pursuit of these topics, the geoscientific disciplines are invited to contribute their knowledge and experience. Major disciplines include: hydrogeology, hydrochemistry, geochemistry, geophysics, engineering geology, remediation science, natural resources management, environmental climatology and biota, environmental geography, soil science and geomicrobiology.