Hawi B. Gemeda, Nikola A. Dudukovic, Cheng Zhu, Anna Guell Izard, Aldair E. Gongora, Joshua R. Deotte, Johnathan T. Davis, Eric B. Duoss, Erika J. Fong
{"title":"Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024)","authors":"Hawi B. Gemeda, Nikola A. Dudukovic, Cheng Zhu, Anna Guell Izard, Aldair E. Gongora, Joshua R. Deotte, Johnathan T. Davis, Eric B. Duoss, Erika J. Fong","doi":"10.1002/admt.202470095","DOIUrl":null,"url":null,"abstract":"<p><b>3D Printed Cellular Fluidics</b></p><p>Cellular fluidic devices take advantage of 3D printing, unit cell-based design, and fluid physics to realize hierarchical composite structures with complex geometries. In article number 2400104, Erika J. Fong and co-workers present a lattice-based hand model that uses varying porosity to pattern red liquid in the “skeletal” region, while the high porosity cells remained unfilled.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202470095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202470095","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D Printed Cellular Fluidics
Cellular fluidic devices take advantage of 3D printing, unit cell-based design, and fluid physics to realize hierarchical composite structures with complex geometries. In article number 2400104, Erika J. Fong and co-workers present a lattice-based hand model that uses varying porosity to pattern red liquid in the “skeletal” region, while the high porosity cells remained unfilled.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.