Object Localization in Highly Cluttered Environments Using Neural Network Learning on Microwave Scattering Data

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microwave and Optical Technology Letters Pub Date : 2024-10-29 DOI:10.1002/mop.70020
Janghoon Jeong, Won-Kwang Park, Seong-Ho Son
{"title":"Object Localization in Highly Cluttered Environments Using Neural Network Learning on Microwave Scattering Data","authors":"Janghoon Jeong,&nbsp;Won-Kwang Park,&nbsp;Seong-Ho Son","doi":"10.1002/mop.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Bifocusing-based microwave imaging is a promising direct imaging method for object localization in various applications. However, the method has the limitation that it only works well in environments with a homogenous background. In this paper, we present a direct microwave imaging method using a neural network (NN) model that can localize a small object even in highly cluttered environments with strong scatterers. The NN model is trained on some data sets obtained through multistatic measurements in a nonhomogeneous environment. To verify the approach, we prepared an experimental testbed equipped with a water tank containing 3 strong scatterers and 16 antennas to obtain 920 MHz multistatic scattering data. This experiment shows good localization performance, with an average localization error of approximately 4 mm (1/9 of a wavelength) over the entire experimental area, even in a strong scattering background.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"66 11","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Bifocusing-based microwave imaging is a promising direct imaging method for object localization in various applications. However, the method has the limitation that it only works well in environments with a homogenous background. In this paper, we present a direct microwave imaging method using a neural network (NN) model that can localize a small object even in highly cluttered environments with strong scatterers. The NN model is trained on some data sets obtained through multistatic measurements in a nonhomogeneous environment. To verify the approach, we prepared an experimental testbed equipped with a water tank containing 3 strong scatterers and 16 antennas to obtain 920 MHz multistatic scattering data. This experiment shows good localization performance, with an average localization error of approximately 4 mm (1/9 of a wavelength) over the entire experimental area, even in a strong scattering background.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微波散射数据的神经网络学习在高度杂乱环境中进行物体定位
基于双聚焦的微波成像是一种很有前途的直接成像方法,可用于各种应用中的物体定位。然而,该方法有一个局限性,即只能在背景均匀的环境中发挥良好作用。在本文中,我们提出了一种使用神经网络(NN)模型的直接微波成像方法,即使在散射体很强的高杂波环境中也能定位小物体。神经网络模型是在非均质环境中通过多静态测量获得的一些数据集上训练出来的。为了验证该方法,我们准备了一个实验测试平台,配备了一个含有 3 个强散射体和 16 个天线的水箱,以获取 920 MHz 多静态散射数据。该实验显示了良好的定位性能,即使在强散射背景下,整个实验区域的平均定位误差约为 4 毫米(1/9 个波长)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
期刊最新文献
Multiband and Wider Bandwidth Plasma Antenna Design Using 3D FDTD Issue information Broadband Filtering Antenna With Asymmetric Feeding Structure A 26.5–29.5-GHz Current-Reused Low Noise Amplifier With Optimized Gate Bias and Flat-Gain Matching Techniques for 5G Communication A Circularly Polarized Filtering Patch Antenna Based on Parasitic Patches With Slots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1