Climate gradient-driven intraspecific aggregation propensity linked to interpatch modulation in grassland communities

IF 2.7 3区 环境科学与生态学 Q2 ECOLOGY Ecosphere Pub Date : 2024-10-27 DOI:10.1002/ecs2.70013
Huaiqiang Liu, Xinyu Wang, Zhiying Liu, Saihanna Jaesong, Jiayue Liu, Qianhui Yang, Ning Wang, Xiaotian Gao, Yarong Feng, Haoxin Li, Jianru Chai, Jialu Zhang, Kexin Li, Frank Yonghong Li
{"title":"Climate gradient-driven intraspecific aggregation propensity linked to interpatch modulation in grassland communities","authors":"Huaiqiang Liu,&nbsp;Xinyu Wang,&nbsp;Zhiying Liu,&nbsp;Saihanna Jaesong,&nbsp;Jiayue Liu,&nbsp;Qianhui Yang,&nbsp;Ning Wang,&nbsp;Xiaotian Gao,&nbsp;Yarong Feng,&nbsp;Haoxin Li,&nbsp;Jianru Chai,&nbsp;Jialu Zhang,&nbsp;Kexin Li,&nbsp;Frank Yonghong Li","doi":"10.1002/ecs2.70013","DOIUrl":null,"url":null,"abstract":"<p>The response of vegetation to climate change on a large scale should be studied at the community level rather than the species level. This necessitates a focused exploration of emerging spatial patterns. Here, we surveyed 264 sites in the Inner Mongolia typical steppe, using the “needling” method to investigate 39,600 clumps formed through the coexistence relationships of dominant species. We found that the effects of slow climate change on grassland communities can be categorized into two general trends: (1) a monotone relationship, characterized by changes in the number of dominant species, compositional diversity, and optimal patch area, and (2) a unimodal relationship, reflected in variations in the number of patches and interspecific associations. The two distinct trends, connected by optimal patch area, concurrently support both the habitat amount hypothesis and the intermediate disturbance hypothesis. These findings suggest that climate change indirectly influences the area and amount of vegetation patches by regulating the arrangement of clumps. Moreover, they indicate that it is the distribution, rather than the number, of species that serves as the front line for plant communities adapting to climate change.</p>","PeriodicalId":48930,"journal":{"name":"Ecosphere","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecs2.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecosphere","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecs2.70013","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The response of vegetation to climate change on a large scale should be studied at the community level rather than the species level. This necessitates a focused exploration of emerging spatial patterns. Here, we surveyed 264 sites in the Inner Mongolia typical steppe, using the “needling” method to investigate 39,600 clumps formed through the coexistence relationships of dominant species. We found that the effects of slow climate change on grassland communities can be categorized into two general trends: (1) a monotone relationship, characterized by changes in the number of dominant species, compositional diversity, and optimal patch area, and (2) a unimodal relationship, reflected in variations in the number of patches and interspecific associations. The two distinct trends, connected by optimal patch area, concurrently support both the habitat amount hypothesis and the intermediate disturbance hypothesis. These findings suggest that climate change indirectly influences the area and amount of vegetation patches by regulating the arrangement of clumps. Moreover, they indicate that it is the distribution, rather than the number, of species that serves as the front line for plant communities adapting to climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候梯度驱动的种内聚集倾向与草地群落的斑块间调节有关
应在群落层面而非物种层面研究植被对大规模气候变化的反应。这就需要对新出现的空间模式进行重点探索。在这里,我们调查了内蒙古典型草原的 264 个地点,采用 "针刺 "法调查了 39,600 个由优势物种共存关系形成的群落。我们发现,缓慢气候变化对草原群落的影响可分为两种总体趋势:(1) 单调关系,以优势物种数量、组成多样性和最佳斑块面积的变化为特征;(2) 单调关系,反映在斑块数量和种间联系的变化上。由最佳斑块面积连接起来的两种不同趋势同时支持了生境数量假说和中间干扰假说。这些研究结果表明,气候变化通过调节植被丛的排列间接影响了植被斑块的面积和数量。此外,这些发现还表明,植物群落适应气候变化的前沿是物种的分布而非数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecosphere
Ecosphere ECOLOGY-
CiteScore
4.70
自引率
3.70%
发文量
378
审稿时长
15 weeks
期刊介绍: The scope of Ecosphere is as broad as the science of ecology itself. The journal welcomes submissions from all sub-disciplines of ecological science, as well as interdisciplinary studies relating to ecology. The journal''s goal is to provide a rapid-publication, online-only, open-access alternative to ESA''s other journals, while maintaining the rigorous standards of peer review for which ESA publications are renowned.
期刊最新文献
How often are ecosystems top-down controlled? Experiments in grassland, grasshopper, and bird systems over time and space Agricultural mosaics offer nesting habitat to dabbling ducks in the arid Intermountain West of the United States Daily and seasonal variations of soil respiration from maize field under different water treatments in North China Tree damage risk across gradients in tree species richness and stand age: Implications for adaptive forest management Forest disturbance shapes habitat selection but not migratory tendency for partially migratory ungulates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1