Understanding the Size-Dependent Photostability and Photoluminescence Intermittency of Blue-Emitting Core/Graded Alloy/Shell “giant”-Quantum Dots

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Optical Materials Pub Date : 2024-09-27 DOI:10.1002/adom.202401132
Rahul Singh, NVS Praneeth, Subarna Biswas, Manoj Palabathuni, Anandu Muralidharan, Nimai Mishra, Saumyakanti Khatua
{"title":"Understanding the Size-Dependent Photostability and Photoluminescence Intermittency of Blue-Emitting Core/Graded Alloy/Shell “giant”-Quantum Dots","authors":"Rahul Singh,&nbsp;NVS Praneeth,&nbsp;Subarna Biswas,&nbsp;Manoj Palabathuni,&nbsp;Anandu Muralidharan,&nbsp;Nimai Mishra,&nbsp;Saumyakanti Khatua","doi":"10.1002/adom.202401132","DOIUrl":null,"url":null,"abstract":"<p>Recently, giant quantum dots (g-QDs) with a core/interface graded alloy shell/shell structure have shown promise in reducing photoluminescence (PL) intermittency and improving photostability. However, this approach has been mainly demonstrated with red and green emitting g-QDs but the blue-emitting graded alloy QDs has remained less explored. To tackle this challenge, a composition gradient method is employed to create three blue-emitting CdZnS/Cd<sub>x</sub>Zn<sub>1–x</sub>S/ZnS core/interface graded alloy shell/shell (C/A/S) quantum dots (QDs) with different diameters. The sample with the largest diameter (gQD-3) exhibits superior optical characteristics, with a photoluminescence quantum yield (PLQY) of approximately 62% and around 80% ON/radiative events at the single-particle level. Conversely, the smallest diameter (gQD-1) sample shows lower PLQY and only 30% radiative events with longer OFF/nonradiative events. Probability distribution analysis of PL trajectories, fitted with a truncated power law, reveals a significantly higher carrier de-trapping rate in gQD-3 compared to gQD-1, attributed to its proximity to band edge trap states. Additionally, the largest diameter sample retains remarkable optical performance during 48 h of continuous UV irradiation in colloidal suspension and single-particle levels. These findings show optimized core/shell structures, gradual alloy interfaces, and outer shell coatings can stabilize blue-emitting quantum dots, advancing next-gen optoelectronics.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"12 30","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202401132","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, giant quantum dots (g-QDs) with a core/interface graded alloy shell/shell structure have shown promise in reducing photoluminescence (PL) intermittency and improving photostability. However, this approach has been mainly demonstrated with red and green emitting g-QDs but the blue-emitting graded alloy QDs has remained less explored. To tackle this challenge, a composition gradient method is employed to create three blue-emitting CdZnS/CdxZn1–xS/ZnS core/interface graded alloy shell/shell (C/A/S) quantum dots (QDs) with different diameters. The sample with the largest diameter (gQD-3) exhibits superior optical characteristics, with a photoluminescence quantum yield (PLQY) of approximately 62% and around 80% ON/radiative events at the single-particle level. Conversely, the smallest diameter (gQD-1) sample shows lower PLQY and only 30% radiative events with longer OFF/nonradiative events. Probability distribution analysis of PL trajectories, fitted with a truncated power law, reveals a significantly higher carrier de-trapping rate in gQD-3 compared to gQD-1, attributed to its proximity to band edge trap states. Additionally, the largest diameter sample retains remarkable optical performance during 48 h of continuous UV irradiation in colloidal suspension and single-particle levels. These findings show optimized core/shell structures, gradual alloy interfaces, and outer shell coatings can stabilize blue-emitting quantum dots, advancing next-gen optoelectronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解蓝色发光核/梯度合金/壳 "巨型 "量子点的尺寸相关光稳定性和光致发光间歇性
最近,具有内核/表面分级合金壳/外壳结构的巨量子点(g-QDs)在减少光致发光(PL)间歇性和提高光稳定性方面显示出了前景。然而,这种方法主要在红色和绿色发光 g-QDs 上得到了验证,但对蓝色发光分级合金 QDs 的探索仍然较少。为了应对这一挑战,我们采用了一种成分梯度法来制备三种不同直径的蓝色发光 CdZnS/CdxZn1-xS/ZnS 内核/界面梯度合金壳/外壳(C/A/S)量子点(QDs)。直径最大的样品(gQD-3)具有优异的光学特性,光致发光量子产率(PLQY)约为 62%,单粒子水平的导通/辐射事件约为 80%。相反,最小直径(gQD-1)样品的光量子产率较低,只有 30% 的辐射事件,关断/非辐射事件较长。用截断幂律拟合的 PL 轨迹概率分布分析表明,与 gQD-1 相比,gQD-3 的载流子脱阱率明显更高,这归因于它接近带边阱态。此外,在胶体悬浮液和单颗粒水平上,最大直径的样品在连续紫外线照射 48 小时后仍能保持出色的光学性能。这些研究结果表明,优化的核/壳结构、渐进的合金界面和外壳涂层可以稳定蓝色发光量子点,从而推动下一代光电子技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
期刊最新文献
Resonantly Enhanced Infrared Up-Conversion in Double-Step Asymmetric Subwavelength Grating Structure (Advanced Optical Materials 32/2024) Masthead: (Advanced Optical Materials 32/2024) Fiber-Integrated van der Waals Quantum Sensor with an Optimal Cavity Interface (Advanced Optical Materials 32/2024) Large-Scale Fabrication of Room-Temperature Phosphorescence Cellulose Filaments with Color-Tunable Afterglows (Advanced Optical Materials 32/2024) Wide-Bandgap RBa3(B3O6)3 (R = Nd, Sm, Tb, Dy, and Er) Single Crystals for Ultraviolet Nonlinear Optics (Advanced Optical Materials 32/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1